Antiamoebin I (AAM-I) and zervamicin II (Zrv-IIB) are peptaibols that exert antibiotic activity through the insertion/disruption of cell membranes. In this study, we investigated how the folding of these peptaibols are affected when some of their native residues are replaced with proline analogues and asymmetrical D-α,α-dialkyl glycines (two classes of noncanonical amino acids). Systematic substitutions of native Aib, Pro, Hyp, and Iva residues were performed to elucidate the folding properties of the modified peptaibols incorporating noncanonical residues.
View Article and Find Full Text PDFIn this work, we investigate the structure, dynamic and thermodynamic properties of noncanonical disubstituted amino acids (α,α-dialkyl glycines), also known as non-natural amino acids, in the peptaibol Alamethicin. The amino acids under study are Aib (α-amino isobutyric acid or α-methyl alanine), Deg (α,α-diethyl glycine), Dpg (α,α-dipropyl glycine), Dibg (α,α-di-isobutyl glycine), Dhg (α,α-dihexyl glycine), DΦg (α,α-diphenyl glycine), Dbzg (α,α-dibenzyl glycine), Ac6c (α,α-cyclohexyl glycine), and Dmg (α,α-dihydroxymethyl glycine). It is hypothesized that these amino acids are able to induce well-defined secondary structure in peptidomimetics.
View Article and Find Full Text PDFIn this study, we investigate the effect of nine noncanonical α,α-dialkyl glycines on the structure, dynamics, and membrane permeation properties of a small peptaibol, peptaibolin. The noncanonical amino acids under study are Aib (α-amino isobutyric acid), Deg (α,α-diethyl glycine), Dpg (α,α-dipropyl glycine), Dibg (α,α-di-isobutyl glycine), Dhg (α,α-dihexyl glycine), DΦg (α,α-diphenyl glycine), Db(z)g (α,α-dibenzyl glycine), Ac6c (α,α-cyclohexyl glycine), and Dmg (α,α-dihydroxymethyl glycine). It is hypothesized that these amino acids are able to induce well-defined secondary structures in peptidomimetics.
View Article and Find Full Text PDFWe investigate the structure and dynamics of α-Chymotrypsin in five room temperature ionic liquids (RTILs) sharing a common cation, hydrated with different water percentages (w/w) (weight of water over protein). Results from molecular dynamics simulations are correlated with experimental evidences from studies on the activity of enzymes in RTILs. α-Chymotrypsin protein structure is closer to its native crystallographic structure in RTILs than in aqueous environment.
View Article and Find Full Text PDFMolecular dynamics simulations of a keratin/peptide complex have been conducted to predict the binding affinity of four different peptides toward human hair. Free energy calculations on the peptides' interaction with the keratin model demonstrated that electrostatic interactions are believed to be the main driving force stabilizing the complex. The molecular mechanics-Poisson-Boltzmann surface area methodology used for the free energy calculations demonstrated that the dielectric constant in the protein's interior plays a major role in the free energy calculations, and the only way to obtain accordance between the free energy calculations and the experimental binding results was to use the average dielectric constant.
View Article and Find Full Text PDFA new expeditious preparation of homochiral (-)-1-azafagomine and (+)-5-epi-1-azafagomine has been devised. Stoodley's diastereoselective cycloaddition of dienes bearing a 2,3,4,6-tetraacetyl glucosyl chiral auxiliary to 4-phenyl-1,2,4-triazole-3,5-dione was merged with Bols's protocol for functionalizing alkenes into molecules bearing a glucosyl framework. Homochiral (+)-5-epi-1-azafagomine was synthetized for the first time.
View Article and Find Full Text PDFJ Mol Graph Model
November 2010
We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed.
View Article and Find Full Text PDFWe present in this work the first molecular simulation study of an enzyme, the serine protease cutinase from Fusarium solani pisi, in two ionic liquids (ILs): 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and 1-butyl-3-methylimidazolium nitrate ([BMIM][NO(3)]). We tested different water contents in these ILs at room temperature (298 K) and high temperature (343 K), and we observe that the enzyme structure is highly dependent on the amount of water present in the IL media. We show that the enzyme is preferentially stabilized in [BMIM][PF6] at 5-10% (w/w) (weight of water over protein) water content at room temperature.
View Article and Find Full Text PDFMolecular dynamics simulation studies of rubredoxin from Desulfovibrio gigas (RDG) were used to characterize the molecular mechanism of thermal stabilization by the compatible solute (CS) diglycerol-phospate (DGP). DGP is a negatively charged CS that accumulates under salt stress in Archaeoglobus fulgidus. Experimental results show that a 100 mM DGP solution exerts a strong protection effect in the half-life of RDG at 363 K (Lamosa et al.
View Article and Find Full Text PDFA comprehensive study of the hydration mechanism of an enzyme in nonaqueous media was done using molecular dynamics simulations in five organic solvents with different polarities, namely, hexane, 3-pentanone, diisopropyl ether, ethanol, and acetonitrile. In these solvents, the serine protease cutinase from Fusarium solani pisi was increasingly hydrated with 12 different hydration levels ranging from 5% to 100% (w/w) (weight of water/weight of protein). The ability of organic solvents to 'strip off' water from the enzyme surface was clearly dependent on the nature of the organic solvent.
View Article and Find Full Text PDFHere, a hemoglobin gene from the nitrogen-fixing actinorhizal plant Myrica gale was isolated, cloned and sequenced. The gene (MgHb) was a class I hemoglobin with strong sequence homology to non-symbiotic hemoglobin genes. MgHb is highly expressed in symbiotic root nodules, but transcripts and protein were also detected in leaves of M.
View Article and Find Full Text PDFA united-atom model of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) and 1-butyl-3-methylimidazolium nitrate ([BMIM][NO(3)]) is developed in the framework of the GROMOS96 43A1(1) force field. These two ionic liquids are parametrized, and their equilibrium properties in the 298-363 K temperature range are subjected to validation against known experimental properties, namely, density, self-diffusion, shear viscosity, and isothermal compressibility. The ionic radial/spatial distributions, pi interaction, gauche/trans populations of the butyl tail, and enthalpies of vaporization are also reported.
View Article and Find Full Text PDFThe catalytic properties of enzymes in nonaqueous solvents are known to be dependent on the nature of the solvent. Here we present a molecular modeling study of the enantioselective properties of the enzyme cutinase in hexane under varying hydration conditions. Previous simulation studies have shown that for this model enzyme in hexane, the structural and dynamical properties are affected by the amount of water associated with the protein, being more similar to the aqueous simulation at 5-10% of water content.
View Article and Find Full Text PDFWe studied the reaction between vinyl butyrate and 2-phenyl-1-propanol in acetonitrile catalyzed by Fusarium solani pisi cutinase immobilized on zeolites NaA and NaY and on Accurel PA-6. The choice of 2-phenyl-1-propanol was based on modeling studies that suggested moderate cutinase enantioselectivity towards this substrate. With all the supports, initial rates of transesterification were higher at a water activity (a(w)) of 0.
View Article and Find Full Text PDF