Self-powered photodetectors (PDs) have been recognized as one of the developing trends of next-generation optoelectronic devices. Herein, it is shown that by introducing a thin layer of SnO film between the Si substrate and the ZnO film, the self-powered photodetector Al/Si/SnO/ZnO/ITO exhibits a stable and uniform violet sensing ability with high photoresponsivity and fast response. The SnO layer introduces a built-in electrostatic field to highly enhance the photocurrent by over 1000%.
View Article and Find Full Text PDFPolyimide is an emerging and very interesting material for substrate and passivation of neural probes. However, the standard curing temperature of polyimide (350 °C) is critical for the microelectrodes and contact pads of the neural probe, due to the thermal oxidation of the metals during the passivation process of the neural probe. Here, the fabrication process of a flexible neural probe, enhanced with a photosensitive and low-temperature cured polyimide, is presented.
View Article and Find Full Text PDFThis paper presents a silicon neural probe with a high-selectivity optical readout function and light emitting diodes for neurons photostimulation and fluorophore excitation. A high-selectivity Fabry-Perot optical filter on the top of a CMOS silicon photodiodes array can read the emitted fluorescence, which indicates the neurons physiological state. The design, fabrication, and characterization of the optical filter are presented.
View Article and Find Full Text PDFProgressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do/do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking.
View Article and Find Full Text PDFIn this review we present critical overview of some of the available literature on the fundamental biology of telomeres and telomerase in Metazoan. With the exception of Nematodes and Arthropods, the (TTAGGG)(n) sequence is conserved in most Metazoa. Available data show that telomerase-based end maintenance is a very ancient mechanism in unicellular and multicellular organisms.
View Article and Find Full Text PDF