Publications by authors named "Nuno Fortunato"

The effective Hamiltonians have been widely applied to simulate the phase transitions in polarizable materials, with coefficients obtained by fitting to accurate first-principles calculations. However, it is tedious to generate distorted structures with symmetry constraints, in particular when high-ordered terms are considered. In this work, we implement and apply a Bayesian optimization-based approach to sample potential energy surfaces, automating the effective Hamiltonian construction by selecting distorted structures via active learning.

View Article and Find Full Text PDF

Due to their versatile composition and customizable properties, ABC Heusler alloys have found applications in magnetic refrigeration, magnetic shape memory effects, permanent magnets, and spintronic devices. The discovery of all--metal Heusler alloys with improved mechanical properties compared to those containing main group elements presents an opportunity to engineer Heusler alloys for energy-related applications. Using high-throughput density-functional theory calculations, we screened magnetic all--metal Heusler compounds and identified 686 (meta)stable compounds.

View Article and Find Full Text PDF

Chalcogenides, which refer to chalcogen anions, have attracted considerable attention in multiple fields of applications, such as optoelectronics, thermoelectrics, transparent contacts, and thin-film transistors. In comparison to oxide counterparts, chalcogenides have demonstrated higher mobility and -type dopability, owing to larger orbital overlaps between metal-X covalent chemical bondings and higher-energy valence bands derived by p-orbitals. Despite the potential of chalcogenides, the number of successfully synthesized compounds remains relatively low compared to that of oxides, suggesting the presence of numerous unexplored chalcogenides with fascinating physical characteristics.

View Article and Find Full Text PDF

Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor-cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high-throughput computational workflow for the design of magnetocaloric materials is introduced.

View Article and Find Full Text PDF

Based on first-principles calculations, the anomalous Hall conductivity (AHC) and anomalous Nernst conductivities (ANCs) of the XMnP (X = Ti, Zr, Hf) compounds are evaluated, and the possibility to tailor such properties in compounds susceptible to changing the magnetization directions is also investigated. We observe large changes in the calculated AHC and ANC for different magnetization directions that are originating from changes in the band structure all over the whole Brillouin zone. Our study gives a promising clue on engineering magnetic intermetallic compounds for tunable transverse thermoelectric applications.

View Article and Find Full Text PDF

Materials with strong magnetostructural coupling have complex energy landscapes featuring multiple local ground states, thus making it possible to switch among distinct magnetic-electronic properties. However, these energy minima are rarely accessible by a mere application of an external stimuli to the system in equilibrium state. A ferromagnetic ground state, with T above room temperature, can be created in an initially paramagnetic alloy by nonequilibrium nanostructuring.

View Article and Find Full Text PDF