Publications by authors named "Nunez-Farfan J"

An introduction to a novel habitat represents a challenge to plants because they likely would face new interactions and possibly different physical context. When plant populations arrive to a new region free from herbivores, we can expect an evolutionary change in their defense level, although this may be contingent on the type of defense, resistance or tolerance, and cost of defense. Here, we addressed questions on the evolution of tolerance to damage in non-native Spanish populations of Datura stramonium by means of two comparative greenhouse experiments.

View Article and Find Full Text PDF

Differential expression of genes is key to mediating developmental and stress-related plant responses. Here, we addressed the regulation of plant metabolic responses to biotic stress and the developmental variation of defense-related genes in four species of the genus with variable patterns of metabolite accumulation and development. We combine transcriptome profiling with phylogenomic techniques to analyze gene expression and coexpression in plants subjected to damage by a specialist folivore insect.

View Article and Find Full Text PDF

When colonizing new ranges, plant populations may benefit from the absence of the checks imposed by the enemies, herbivores, and pathogens that regulated their numbers in their original range. Therefore, rates of plant damage or infestation by natural enemies are expected to be lower in the new range. Exposing both non-native and native plant populations in the native range, where native herbivores are present, can be used to test whether resistance mechanisms have diverged between populations.

View Article and Find Full Text PDF

Plant resistance refers to the heritable ability of plants to reduce damage caused by natural enemies, such as herbivores and pathogens, either through constitutive or induced traits like chemical compounds or trichomes. However, the genetic architecture-the number and genome location of genes that affect plant defense and the magnitude of their effects-of plant resistance to arthropod herbivores in natural populations remains poorly understood. In this study, we aimed to unveil the genetic architecture of plant resistance to insect herbivores in the annual herb Datura stramonium (Solanaceae) through quantitative trait loci mapping.

View Article and Find Full Text PDF

The expression of plant resistance traits against arthropod herbivores often comes with costs to other essential plant functions such as growth and fitness. These trade-offs are shaped by the allocation of limited resources. However, plants might also possess the capability to allocate resources to both resistance and growth, thereby ensuring their survival when under herbivore attacks.

View Article and Find Full Text PDF

Knowing how species and communities respond to environmental change is fundamental in the context of climate change. The search for patterns of abundance and phenotypic variation along altitudinal gradients can provide evidence on adaptive limits. We evaluated the species abundance and the variation in morphometric and stomatal characters in five tree ferns species (Cyathea fulva, C.

View Article and Find Full Text PDF

Macroevolutionary patterns in the association between plant species and their herbivores result from ecological divergence promoted by, among other factors, plants' defenses and nutritional quality, and herbivore adaptations. Here, we assessed the performance of the herbivores , a trophic specialist on , and , a polyphagous pest herbivore, when fed with species of . We used comparative phylogenetics and multivariate methods to examine the effects of species' tropane alkaloids, leaf trichomes, and plant macronutrients on the two herbivores´ performances (amount of food consumed, number of damaged leaves, larval biomass increment, and larval growth efficiency).

View Article and Find Full Text PDF

Agricultural losses brought about by insect herbivores can be reduced by understanding the strategies that plants use against insect herbivores. The two main strategies that plants use against herbivory are resistance and tolerance. They are, however, predicted to be mutually exclusive, yet numerous populations have them both (hence a mixed defense strategy).

View Article and Find Full Text PDF

Premise: Although ecological differentiation driven by altitude and soil is hypothesized to promote coexistence of sympatric tree species of Damburneya (Lauraceae), the mechanistic role of leaf functional variation on ecological differentiation among co-occurring species remains unexplored. We aimed to determine whether the patterns of leaf trait variation reflect ecological differences among sympatric Damburneya species. We tested whether trait correlations underlying functional strategies and average species traits vary in response to local soil heterogeneity along an altitudinal gradient, potentially affecting species distributions.

View Article and Find Full Text PDF

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors.

View Article and Find Full Text PDF

Premise: The mechanisms generating the geographical distributions of genetic diversity are a central theme in evolutionary biology. The amount of genetic diversity and its distribution are controlled by several factors, including dispersal abilities, physical barriers, and environmental and climatic changes. We investigated the patterns of genetic diversity and differentiation among populations of the widespread species Brosimum alicastrum in Mexico.

View Article and Find Full Text PDF

Background: Plants have evolved physical-chemical defense to prevent/diminish damage by their enemies. Chemical defense involves the synthesis' pathways of specialized toxic, repellent, or anti-nutritive metabolites to herbivores. Molecular evolutionary studies have revealed the origin of new genes, acquisition and functional diversification along time in different plant lineages.

View Article and Find Full Text PDF

Plant mating system determines, to a great extent, the demographic and genetic properties of populations, hence their potential for adaptive evolution. Variation in plant mating system has been documented between phylogenetically related species as well between populations of a species. A common evolutionary transition, from outcrossing to selfing, is likely to occur under environmental spatial variation in the service of pollinators.

View Article and Find Full Text PDF

The annual herb, , is a member of the Solanaceae family. In this study, we report the chloroplast genomes of two Mexican plants of . Both chloroplast genomes of (GenBank accessions: MT610896 and MT610897) were assembled as a circular molecule.

View Article and Find Full Text PDF

Tropane alkaloids and terpenoids are widely used in the medicine and pharmaceutic industry and evolved as chemical defenses against herbivores and pathogens in the annual herb Datura stramonium (Solanaceae). Here, we present the first draft genomes of two plants from contrasting environments of D. stramonium.

View Article and Find Full Text PDF

Because most species are collections of genetically variable populations distributed to habitats differing in their abiotic/biotic environmental factors and community composition, the pattern and strength of natural selection imposed by species on each other's traits are also expected to be highly spatially variable. Here, we used genomic and quantitative genetic approaches to understand how spatially variable selection operates on the genetic basis of plant defenses to herbivores. To this end, an F progeny was generated by crossing Datura stramonium (Solanaceae) parents from two populations differing in their level of chemical defense.

View Article and Find Full Text PDF

Theories of plant invasion based on enemy release in a new range assume that selection exerted by specialist herbivores on defence traits should be reduced, absent, or even selected against in the new environment. Here, we measured phenotypic selection on atropine and scopolamine concentration of in eight native (Mexico) and 14 non-native (Spain) populations. Native populations produced between 20 and 40 times more alkaloid than non-native populations (atropine: 2.

View Article and Find Full Text PDF

Introduction: Defoliation and light competition are ubiquitous stressors that can strongly limit plant performance. Tolerance to defoliation is often associated with compensatory growth, which could be positively or negatively related to plant growth. Genetic variation in growth, tolerance and compensation, in turn, plays an important role in the evolutionary adaptation of plants to changing disturbance regimes but this issue has been poorly investigated for long-lived woody species.

View Article and Find Full Text PDF

: Genomic information can help prevent species loss, facilitate reserve design and maximize adaptive potential of natural mangrove populations.

View Article and Find Full Text PDF

The family Curculionidae (Coleoptera), the "true" weevils, have diversified tightly linked to the evolution of flowering plants. Here, we aim to assess diversification at a lower taxonomic level. We analyze the evolution of the genus Trichobaris in association with their host plants.

View Article and Find Full Text PDF

Plant populations invading new environments might compromise their fitness contribution to the next generation, because of the lack of native specialist pollinators and/or potential mates. Thus, changes in plant mating system and traits linked to it are expected in populations colonising new environments where selection would favour selfing and floral traits that maximise reproductive output. To test this, we studied native (Mexico) and non-native (Spain) populations of the obligate sexual reproducing annual weed Datura stramonium.

View Article and Find Full Text PDF

Background And Aims: Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization.

Methods: Full-sib families of two Mexican populations of D.

View Article and Find Full Text PDF

Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation.

View Article and Find Full Text PDF

Introduction: Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms.

View Article and Find Full Text PDF