Publications by authors named "Nunes-Tavares N"

Interleukin-2 is a classical immune cytokine whose neural functions have received little attention. Its levels have been found to be increased in some neuropathologies, such as Alzheimer's disease, multiple sclerosis and uveitis. Mechanistically, it has been demonstrated the role of IL-2 in regulating glutamate and acetylcholine transmission, thus being relevant for CNS physiology.

View Article and Find Full Text PDF
Article Synopsis
  • Amyloid β oligomers (AβOs) play a crucial role in the early stages of Alzheimer's disease (AD), contributing to memory issues and key AD-related pathologies like tau abnormalities and cognitive decline.
  • The study explores how a bifunctional crosslinker, 1,5-difluoro-2,4-dinitrobenzene (DFDNB), helps stabilize AβO structures, preventing them from forming larger aggregates and maintaining them in a soluble form.
  • Experiments show that DFDNB-stabilized AβOs can induce significant neurodegenerative effects, including tau hyperphosphorylation and memory dysfunction in mice, highlighting their potential for further research into AD diagnostics and treatments.
View Article and Find Full Text PDF

Interleukin-4 (IL-4) is a pleiotropic cytokine that regulates several phenomena, among them survival and differentiation of neuronal and glial cells. The aim of this work was to investigate the effect of IL-4 on the cholinergic differentiation of neonatal rat retinal cells in vitro, evaluating its effect on the levels of cholinergic markers (CHT1-high-affinity choline transporter; VAChT-vesicular acetylcholine transporter, ChAT-choline acetyltransferase, AChE-acetylcholinesterase), muscarinic receptors, and on the signaling pathways involved. Lister Hooded rat pups were used in postnatal days 0-2 (P0-P2).

View Article and Find Full Text PDF

Dysregulated cholinergic signaling is an early hallmark of Alzheimer disease (AD), usually ascribed to degeneration of cholinergic neurons induced by the amyloid-β peptide (Aβ). It is now generally accepted that neuronal dysfunction and memory deficits in the early stages of AD are caused by the neuronal impact of soluble Aβ oligomers (AβOs). AβOs build up in AD brain and specifically attach to excitatory synapses, leading to synapse dysfunction.

View Article and Find Full Text PDF

The mammalian protein CutA was first discovered in a search for the membrane anchor of mammalian brain acetylcholinesterase (AChE). It was co-purified with AChE, but it is distinct from the real transmembrane anchor protein, PRiMA. CutA is a ubiquitous trimeric protein, homologous to the bacterial CutA1 protein that belongs to an operon involved in resistance to divalent ions ("copper tolerance A").

View Article and Find Full Text PDF

The electrogenic tissue of the electric eel Electrophorus electricus (L.) is distributed in three well-defined electric organs, the Main electric organ, Sach's organ and Hunter's organ. Sulfated glycosaminoglycan (GAG) composition was characterized in the three electric organs of the electric eel.

View Article and Find Full Text PDF

Background: The effect of mercury (Hg(2+)) on the activity of choline acetyltransferase (ChAT) from electrocytes of Electrophorus electricus (L.) was studied due to the importance of this enzyme and acetylcholine in many neurochemical functions such as arousal, learning, and memory.

Material/methods: Mercury, which has affinity to thiol groups, acted as a potent inhibitor of ChAT, which was obtained by differential centrifugation and ammonium sulfate precipitation, at 80%, from the main electric organ homogenate.

View Article and Find Full Text PDF

We have previously demonstrated that Na+, K(+)-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the alpha subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of alpha isoforms (alpha1 and alpha2) in the electrocyte.

View Article and Find Full Text PDF

The effects of tricyclic antidepressants drugs (TCA) amitriptyline, imipramine and nortriptyline, on purified Electrophorus electricus (L.) acetylcholinesterase (AChE; acetylcholine hydrolase, EC 3.1.

View Article and Find Full Text PDF

Acetylcholine is the neurotransmitter responsible for the transmission of impulses from cholinergic neurons to cells of innervated tissues. Its biosynthesis is catalyzed by the enzyme Choline acetyltransferase that is considered to be a phenotypically specific marker for cholinergic system. It is well known that the regulation of Choline acetyltransferase activity under physiological and pathological conditions is important for development and neuronal activities of cholinergic functions.

View Article and Find Full Text PDF

The present investigation deals with the purification and the partial characterization of the soluble creatine kinase (CK) isoenzyme, isolated from the electric organ electrocyte of Electrophorus electricus (L.). Purification was performed by precipitation of the enzyme in the crude extract with ammonium sulfate (80%).

View Article and Find Full Text PDF