Publications by authors named "Nuli Xie"

Article Synopsis
  • Localized hybridization chain reaction (LHCR) enhances the speed and sensitivity of traditional DNA signal amplification techniques, addressing their limitations.
  • The research demonstrates the use of modular assembly to create a DNA scaffold using H-shaped DNA modules that improves the loading capacity and spatial localization of DNA hairpins.
  • The developed H-module-based hairpin scaffold (HHS) successfully amplified fluorescence imaging of mRNA, offering a promising method for detecting low-abundance biomolecules in both laboratory and live environments.
View Article and Find Full Text PDF

Cancer is one of the major diseases that endanger human health. However, the use of anticancer drugs is accompanied by a series of side effects. Suitable drug delivery systems can reduce the toxic side effects of drugs and enhance the bioavailability of drugs, among which targeted drug delivery systems are the main development direction of anticancer drug delivery systems.

View Article and Find Full Text PDF

The past decades have witnessed the evolution of electronic and photonic integrated circuits, from application specific to programmable. Although liquid-phase DNA circuitry holds the potential for massive parallelism in the encoding and execution of algorithms, the development of general-purpose DNA integrated circuits (DICs) has yet to be explored. Here we demonstrate a DIC system by integration of multilayer DNA-based programmable gate arrays (DPGAs).

View Article and Find Full Text PDF

CLEC16A is an E3 ubiquitin ligase that regulates mitochondrial quality control through mitophagy and is associated with over 20 human diseases. CLEC16A forms a complex with another E3 ligase, RNF41, and a ubiquitin-specific peptidase, USP8; however, regions that regulate CLEC16A activity or the assembly of the tripartite mitophagy regulatory complex are unknown. Here, we report that CLEC16A contains an internal intrinsically disordered protein region (IDPR) that is crucial for CLEC16A function and turnover.

View Article and Find Full Text PDF

Sensitive detection of miRNA targets in complex biological samples possesses great value in biopsy analysis and disease diagnosis but is still challenging because of low abundance and nonspecific interferences. In this work, self-primer DNA polymerization-propelled stochastic walkers (SWs) were proposed to detect miRNA-24 by combining magnetic microbeads (MMBs) and flow cytometry. The MMBs not only provide a three-dimensional interface for DNA walkers but also facilitate the enrichment and isolation of RNA targets from complex biological samples such as serum.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) can be used as biomarkers for the diagnosis and therapy of cancers. However, their low abundance and the complex environment in biological samples hinder miRNA detection. A dual amplification strategy based on the bio-barcode technique (BCA) and auto-cycling primer extension (APE) is proposed to detect miRNA targets in complex biological samples.

View Article and Find Full Text PDF

DNA logic circuits are based on DNA molecular programming that implements specific algorithms using dynamic reaction networks. Particularly, DNA adder circuits are key building blocks for performing digital computation. Nevertheless, existing circuit architectures are limited by scalability for implementing multi-bit adder due to the number of required gates and strands.

View Article and Find Full Text PDF

It is of great value to detect biological molecules in live cells. However, probes for imaging low-abundance targets in live cells are limited by the one-to-one signal-triggered model. Here, we introduce the concept of the amplified FRET nanoflare, which employs high-abundance endogenous mRNA as fuel strands to amplify the detection of low abundance intracellular miRNA.

View Article and Find Full Text PDF

It is of great interest to construct DNA-functionalized gold nanoparticles (DNA-AuNPs) with a controllable number of DNA strands and relative orientations. Herein, we describe a three-dimensional (3D) molecular transfer strategy, in which a pattern of DNA strands can be transferred from a DNA icosahedron cage (I-Cage) to the wrapped AuNP surface. The results show that DNA-AuNPs produced by this method inherit DNA pattern information encoded in the transient I-Cage template with high fidelity.

View Article and Find Full Text PDF

Accurate discrimination between different cells at the molecular level is particularly important for disease diagnosis. Endogenous RNAs are such molecular candidates for cancer cell subtype identification. But the key is that there is often low abundance of RNAs in live cells, or some RNAs are often shared by multiple types of cells.

View Article and Find Full Text PDF

Nucleic acids, as one kind of significant biomarker, have attracted tremendous attention and exhibited immense values in fundamental studies and clinical applications. In this work, we developed a fluorescent assay for detecting nucleic acids in complex samples based on magnetic microbead (MMB)-assisted catalyzed hairpin assembly (CHA) and a donor donor-acceptor fluorescence resonance energy transfer ("DD-A" FRET) signaling mechanism. Three types of DNA hairpin probes were employed in this system, including Capture, H1 (double FAM-labeled probe as FRET donor), and H2 (TAMRA-labeled probe as FRET acceptor).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulated diverse cellular processes including differentiation, proliferation, apoptosis, metabolism and signal transduction pathways. An increasing number of data suggested that miRNA-21 could be identified as diagnostic and therapeutic biomarker for breast cancer. Meanwhile, inhibiting the function of miRNA-21, resulting in cells growth inhibition and apoptotic cells death.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have become an ideal biomarker candidate for early diagnosis of diseases. But various diseases involve changes in the expression of different miRNAs. Therefore, multiplexed assay of miRNAs in live cells can provide critical information for our better understanding of their roles in cells and further validating of their function in clinical diagnoses.

View Article and Find Full Text PDF

Innovative techniques to visualize native microRNAs (miRNAs) in live cells can dramatically impact current research on the roles of miRNA in biology and medicine. Here, we report a novel approach for live-cell miRNA imaging using a biodegradable MnO nanosheet-mediated DD-A FRET hybridization chain reaction (HCR). The MnO nanosheets can adsorb DNA hairpin probes and deliver them into live cells.

View Article and Find Full Text PDF

Accurate measurement of intracellular temperature is of great significance in biology and medicine. With use of DNA nanotechnology and inspiration by nature's examples of "protective and reversible responses" exoskeletons, a scallop-inspired DNA nanomachine (SDN) is desgined as a ratiometric nanothermometer for intracellular temperature sensing. The SDN is composed of a rigid DNA tetrahedron, where a thermal-sensitive molecular beacon (MB) is embedded in one edge of the DNA tetrahedron.

View Article and Find Full Text PDF

With the rapid development of DNA nanotechnology, various DNA nanostructures with different shapes and sizes have been self-assembled using "bottom-up" fabrication strategies and applied to a wide range of fields such as biosensors, drug delivery and tools for molecular biology. As a classical and simple polyhedron, DNA tetrahedron can be easily synthesised by a one-step assembly. Due to the excellent biocompatibility and cellular permeability, it provides a universal and promising platform to construct a series of biosensors and drug delivery systems for living cells studies.

View Article and Find Full Text PDF

A new class of intracellular nanoprobe, termed AuNP loaded split-DNAzyme probe, was developed to sense miRNA in living cells. Briefly, it consists of an AuNP and substrates hybridized with two half of split DNAzymes. In the absence of target miRNA, the split DNAzymes form an inactive DNAzyme motif with their substrate through partial paring at the end of each strand, and the fluorescence is quenched.

View Article and Find Full Text PDF

A new class of intracellular nanoprobe, termed AuNP-based hairpin-locked-DNAzyme probe, was developed to sense miRNA in living cells. Briefly, it consists of an AuNP and hairpin-locked-DNAzyme strands. In the absence of target miRNA, the hairpin-locked-DNAzyme strand forms a hairpin structure by intramolecular hybridization, which could inhibit the catalytic activity of DNAzyme strand and the fluorescence is quenched by the AuNP.

View Article and Find Full Text PDF

The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn ions by intracellular GSH.

View Article and Find Full Text PDF

Due to the effective properties of the FRET signal and K-sensitive recognition of G-quadruplex, aptamer-based FRET nanoflares were developed to sense intracellular potassium ions.

View Article and Find Full Text PDF

The ability to visualize tumor-related mRNA in single cells would distinguish whether they are cancer cells or normal cells, which holds great promise for cancer diagnosis at an early stage. Fluorescence resonance energy transfer (FRET) and hybridization chain reactions (HCRs) were combined with amplified sense tumor-related mRNA (TK1 mRNA) with high sensitivity in single cells and tissue sections. Using this strategy, each copy of the target mRNA can propagate a chain reaction of hybridization events between two alternating hairpins to form a nicked duplex that contains repeated FRET units, amplifying the fluorescent signal.

View Article and Find Full Text PDF

A FRET-based sensor is anchored on the cell surface through streptavidin-biotin interactions. Due to the excellent properties of the pH-sensitive i-motif structure, the sensor can detect extracellular pH with high sensitivity and excellent reversibility.

View Article and Find Full Text PDF

To date, a few of DNAzyme-based sensors have been successfully developed in living cells; however, the intracellular aptazyme sensor has remained underdeveloped. Here, the first aptazyme sensor for amplified molecular probing in living cells is developed. A gold nanoparticle (AuNP) is modified with substrate strands hybridized to aptazyme strands.

View Article and Find Full Text PDF

Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications.

View Article and Find Full Text PDF

Due to its low cytotoxicity, high resistance to enzymatic degradation, and cellular permeability, a DNA tetrahedron-based molecular beacon (DTMB) is designed for tumor-related TK1 mRNA detection in living cells, where the target sequence can induce the tetrahedron from contraction to extension, resulting in fluorescence restoration.

View Article and Find Full Text PDF