The integrity and properties of mycolic acid (MA) antigens integrated into a self-assembled monolayer (SAM) of N-(2-mercaptoethyl)octadecanamide, (MEODA), on a gold electrode have been interrogated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). EIS data showed that Au-MEODA and Au-MEODA-MA behave as microelectrode arrays, with pinholes acting as the microelectrodes that permit electron transport between a redox-active probe in solution and the underlying gold surface. The average radii of the pinholes (r(a)) and half the distance between the centers of the neighbouring pinholes (r(b)), were estimated from EIS using the pore size model, and discussed.
View Article and Find Full Text PDFElectrochemical impedimetric recognition by anti-mycolic acid antibodies, present in tuberculosis (TB)-positive human serum co-infected with human immunodeficiency virus (HIV), of mycolic acids (MA) integrated into a self-assembled monolayer of N-(2-mercaptoethyl)octadecanamide on a gold electrode is described, proving that the MA-based electrode can satisfactorily discriminate between a TB-positive and a TB-negative serum, thus offering promise as a potential impedimetric immunosensing platform for active tuberculosis.
View Article and Find Full Text PDF