Publications by authors named "Nrusingh C Biswal"

Purpose: Periodic quality assurance CTs (QACTs) are routine in proton beam therapy. In this study, we tested whether the necessity for a QACT could be determined by evaluating the change in beam path length (BPL) on daily cone-beam CT (CBCT).

Patients And Methods: In this Institutional Review Board-approved study, we retrospectively analyzed 959 CBCT images from 78 patients with sarcomas treated with proton pencil-beam scanning.

View Article and Find Full Text PDF

Purpose: Noncoplanar plans (NCPs) are commonly used for proton treatment of bilateral head and neck (HN) malignancies. NCP requires additional verification setup imaging between beams to correct residual errors of robotic couch motion, which increases imaging dose and total treatment time. This study compared the quality and robustness of NCPs with those of coplanar plans (CPs).

View Article and Find Full Text PDF

Purpose: Docetaxel (DXL), a noted radiosensitizer, is one of the few chemotherapy drugs approved for castration-resistant prostate cancer (CRPC), though only a fraction of CRPCs respond to it. CAV-1, a critical regulator of radioresistance, has been known to modulate DXL and radiation effects. Combining DXL with radiotherapy may create a synergistic anticancer effect through CAV-1 and improve CRPC patients' response to therapy.

View Article and Find Full Text PDF

Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer, and the use of 3-bromopyruvate (3-BP) as an antiglycolytic agent has shown promise in killing pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance requires the ability to probe the interaction of cancer drugs with complex tumor-associated microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging technology is currently available to analyze TAMs.

View Article and Find Full Text PDF

Purpose: Treatment planning for head-and-neck (H&N) cancer, in particular oropharynx, nasopharynx, and paranasal sinus cases, at our center requires noncoplanar proton beams due to the complexity of the anatomy and target location. Targeting accuracy for all beams is carefully evaluated by using image guidance before delivering proton beam therapy (PBT). In this study, we analyzed couch shifts to evaluate whether imaging is required before delivering each field with different couch angles.

View Article and Find Full Text PDF

Purpose: To compare the dosimetric accuracy of surface-guided radiation therapy (SGRT) and cone-beam computed tomography (CBCT) setups in proton breast treatment plans.

Methods: Data from 30 patients were retrospectively analyzed in this IRB-approved study. Patients were prescribed 4256-5040 cGy in 16-28 fractions.

View Article and Find Full Text PDF

Chemoradiation therapy plays an important role in both the neoadjuvant and definitive management of esophageal cancer (EC). Prior studies have suggested that advanced planning techniques can better spare organs at risk including the heart. Although multiple toxicities can result from esophageal radiotherapy, one less studied acute toxicity is that of myelosuppression, which can result, in part, from the combination of chemotherapy and incidental radiotherapy administration to the vertebral bodies (VBs), which abut the posterior aspect of the esophagus, especially in the lower thoracic esophagus.

View Article and Find Full Text PDF

Endocrine therapy resistance in breast cancer is a major obstacle in the treatment of patients with estrogen receptor-positive (ER+) tumors. Herein, we demonstrate the feasibility of longitudinal, noninvasive and semiquantitative in vivo molecular imaging of resistance to three endocrine therapies by using an inducible fluorescence-labeled short hairpin RNA (shRNA) system in orthotopic mice xenograft tumors. We employed a dual fluorescent doxycycline (Dox)-regulated lentiviral inducer system to transfect ER+ MCF7L breast cancer cells, with green fluorescent protein (GFP) expression as a marker of transfection and red fluorescent protein (RFP) expression as a surrogate marker of Dox-induced tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) knockdown.

View Article and Find Full Text PDF

Hypofractionated whole-breast irradiation has emerged as a viable alternative to conventional fractionation. In the field-in-field forward planning technique, a merged plan with 2 to 4 segmental fields is the final plan delivered to the machine. As per the ASTRO guidelines for the hypofractionation regimen, the volume of breast tissue receiving V of the prescription dose should be less than 200 cc.

View Article and Find Full Text PDF

Introduction: Activation of the phosphatidylinositol 3-kinase (PI3K) pathway in estrogen receptor α (ER)-positive breast cancer is associated with reduced ER expression and activity, luminal B subtype, and poor outcome. Phosphatase and tensin homolog (PTEN), a negative regulator of this pathway, is typically lost in ER-negative breast cancer. We set out to clarify the role of reduced PTEN levels in endocrine resistance, and to explore the combination of newly developed PI3K downstream kinase inhibitors to overcome this resistance.

View Article and Find Full Text PDF

Aim: We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer.

Materials & Methods: Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice.

Results: Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles.

View Article and Find Full Text PDF

Wavelet transform of polarized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate normal and malignant tissue types. The intensity differences of parallel and perpendicularly polarized fluorescence spectra are subjected to investigation, since they are relatively free of diffusive background. A number of parameters, capturing spectral variations and subtle changes in the diseased tissues in the visible wavelength regime, are clearly identifiable in the wavelet domain.

View Article and Find Full Text PDF

We report the photothermal response and Near Infrared (NIR) imaging sensitivities of magneto-fluorescent silica core gold nanocomplexes designed for molecular image guided thermal therapy of cancer. Approximately 160 nm Silica core gold nanoshells were designed to provide NIR fluorescent and Magnetic Resonance (MR) contrast by incorporating FDA approved dye indocyanine green (ICG) and iron-oxide within an outer silica epilayer. The imaging and therapeutic sensitivity, and the stability of fluorescence contrast for 12 microliters of suspension (containing approximately 7.

View Article and Find Full Text PDF

Optical scattering coefficient from ex vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310 nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from the normal tissue group consisted of 833 measurements from 88 sites was 2.

View Article and Find Full Text PDF

We present an ultrasound (US)-guided diffuse optical tomography for mapping tumor deoxyhemoglobin (deoxyHb) and oxyhemoglobin (oxyHb) concentrations in blood phantoms and in in-vivo patients. Because oxyHb and deoxyHb respond differently at different wavelengths, four laser diodes of wavelengths 740 nm, 780 nm, 808 nm and 830 nm were used in the study. Tumor model experiments were performed using phantoms of different hemoglobin oxygen saturations (14%-89%) representing hemoglobin oxygenation in tissue.

View Article and Find Full Text PDF

Ovarian cancer has the lowest survival rate of the gynecologic cancers because it is predominantly diagnosed in the late stages due to the lack of reliable symptoms and efficacious screening techniques. A novel hybrid intraoperative probe has been developed and evaluated for its potential role in detecting and characterizing ovarian tissue. The hybrid intraoperative dual-modality device consists of multiple scintillating fibers and an optical coherence tomography imaging probe for simultaneously mapping the local activities of (18)F-FDG uptake and imaging of local morphological changes of the ovary.

View Article and Find Full Text PDF

We have developed a novel nitroimidazole indocyanine dye conjugate for tumor-targeted hypoxia fluorescence tomography. The hypoxia probe has been evaluated in vitro using tumor cell lines and in vivo with tumor targeting in mice. The in vitro cell studies were performed to assess fluorescence labeling differences between hypoxia and normoxia conditions.

View Article and Find Full Text PDF

We demonstrate the feasibility of fluorescence imaging of deeply seated tumors using mice injected with an angiogenesis tracer, a vascular endothelial growth factor conjugated with the infrared dye cyanine 7 (VEGF/Cy7). Our optical-only imaging reconstruction method separately estimates the target depth, and then applies this information to reconstruct functional information such as fluorophore concentration. Fluorescence targets with concentrations as low as sub-25 nM are well reconstructed at depths up to 2 cm in both homogeneous and heterogeneous media with this technique.

View Article and Find Full Text PDF

Fluorescence intensity fluctuations in the visible wavelength regime in normal, benign, and cancerous human breast tissue samples are studied through wavelet transform. The analyses have been carried out in unpolarized, parallel and perpendicularly polarized channels, for optimal tissue characterization. It has been observed that polarized fluorescence data, particularly the perpendicular components, differentiate various tissue types quite well.

View Article and Find Full Text PDF