Promoters are one of the most important components for many gene-based research as they can fine-tune precise gene expression. Many unique plant promoters have been characterized, but strong promoters with dual expression in both monocot and dicot systems are still lacking. In this study, we attempted to make such a promoter by combining specific domains from monocot-infecting pararetroviral-based promoters sugarcane bacilliform virus (SCBV) and banana streak virus (BSV) to a strong dicot-infecting pararetroviral-based promoter mirabilis mosaic virus (MMV).
View Article and Find Full Text PDFUbiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome.
View Article and Find Full Text PDFAbiotic stresses are major constraints in crop production, and are accountable for more than half of the total crop loss. Plants overcome these environmental stresses using coordinated activities of transcription factors and phytohormones. Pearl millet an important C4 cereal plant having high nutritional value and climate resilient features is grown in marginal lands of Africa and South-East Asia including India.
View Article and Find Full Text PDFHere, we present a streamlined Agrobacterium-mediated transformation protocol for jute (Corchorus sp.). We describe steps to pierce and vacuum infiltrate imbibed jute seeds with Agrobacterium suspension.
View Article and Find Full Text PDFThis review article explores the intricate role, regulation, and signaling mechanisms of WRKY TFs in response to biotic stress, particularly emphasizing their pivotal role in the trophism of plant-pathogen interactions. Transcription factors (TFs) play a vital role in governing both plant defense and development by controlling the expression of various downstream target genes. Early studies have shown the differential expression of certain WRKY transcription factors by microbial infections.
View Article and Find Full Text PDFBiotechnol Genet Eng Rev
December 2024
Micronutrient deficiency conditions, such as anemia, are the most prevalent global health problem due to inadequate iron and folate in dietary sources. Biofortification advancements can propel the rapid amelioration of nutritionally beneficial components in crops that are required to combat the adverse effects of micronutrient deficiencies on human health. To date, several strategies have been proposed to increase micronutrients in plants to improve food quality, but very few approaches have intrigued `clustered regularly interspaced short palindromic repeats' (CRISPR) modules for the enhancement of iron and folate concentration in the edible parts of plants.
View Article and Find Full Text PDFTranscription factors (TFs) are the regulatory proteins that act as molecular switches in controlling stress-responsive gene expression. Among them, the MYB transcription factor family is one of the largest TF family in plants, playing a significant role in plant growth, development, phytohormone signaling and stress-responsive processes. Pearl millet ( L.
View Article and Find Full Text PDFWe characterized an efficient chimeric sub-genomic transcript promoter from Horseradish Latent Virus, FHS4, active in both dicot and monocot plants, and it could be a potential tool for plant biotechnology. Plant pararetroviruses are a rich source of novel plant promoters widely used for biotechnological applications. Here, we comprehensively characterized a unique sub-genomic transcript (Sgt) promoter of Horseradish Latent Virus (HRLV) and identified a fragment (HS4; - 340 to + 10; 351 bp) that showed the highest expression of reporter genes in both transient and transgenic assays as evidenced by biochemical, histochemical GUS reporter assay and transcript analysis of uidA gene by qRT-PCR.
View Article and Find Full Text PDFThe genus comprises fast-growing, diploid legumes, cultivated in tropical and subtropical parts of the world. It comprises more than 200 species among which , , , , , , and are of enormous agronomic importance. Human selection along with natural variability within these species encompasses a vital source for developing new varieties.
View Article and Find Full Text PDFRecombinant promoters are of high value in translational research. Earlier, we developed two recombinant promoters, namely MUAS35SCP and FUAS35SCP, and their transcriptional activities were found to be stronger than that of the most widely used CaMV35S promoter in dicot plants. Presently, we are reporting constitutive expression of both GUS and GFP reporters under the control of these promoters in several monocots, including rice, wheat, and pearl millet.
View Article and Find Full Text PDFPlants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination.
View Article and Find Full Text PDFPearl millet is an important C4 cereal plant that possesses enormous capacity to survive under extreme climatic conditions. It serves as a major food source for people in arid and semiarid regions of south-east Asia and Africa. GRAS is an important transcription factor gene family of plant that play a critical role in regulating developmental processes, stress responses and phytohormonal signalling.
View Article and Find Full Text PDFWe have constructed two intra-molecularly shuffled promoters, namely S100 and D100. The S100 recombinant promoter (621 bp) was generated by ligation of 250 bp long upstream activation sequence (UAS) of Strawberry vein banding virus (SV10UAS; - 352 to - 102 relative to TSS) with its 371 bp long TATA containing core promoter domain (SV10CP; - 352 to + 19). Likewise, 726 bp long D100 promoter was constructed by fusion of 170 bp long UAS of Dahlia mosaic virus (DaMV14UAS; - 203 to - 33) with its 556 bp long core promoter domain (DaMV4CP; - 474 to + 82).
View Article and Find Full Text PDFWe analyzed the synthetic full-length transcript promoter of Blueberry red ringspot virus (BRRV) and developed two chimeric promoters (MBR3 and FBR3). Transcriptional activities of these chimeric promoters were found equivalent to that of the CaMV35S promoter. Chimeric promoters driven plant-derived PaDef protein showed high antimicrobial activities against several pathogens.
View Article and Find Full Text PDFIn this study, useful hybrid promoters were developed for efficient ectopic gene expression in monocot and dicot plants, and they hold strong prominence in both transgenic research and biotech industries. This study deals with developing novel synthetic promoters derived from Rice Tungro Bacilliform Virus (RTBV) and Mirabilis Mosaic Virus (MMV). Despite numerous availability, there is a severe scarcity of promoters universally suitable for monocot and dicot plants.
View Article and Find Full Text PDFBackground: Plants have developed various sophisticated mechanisms to cope up with climate extremes and different stress conditions, especially by involving specific transcription factors (TFs). The members of the WRKY TF family are well known for their role in plant development, phytohormone signaling and developing resistance against biotic or abiotic stresses. In this study, we performed a genome-wide screening to identify and analyze the WRKY TFs in pearl millet (Pennisetum glaucum; PgWRKY), which is one of the most widely grown cereal crops in the semi-arid regions.
View Article and Find Full Text PDFConcomitant increase of auxin-responsive factors , along with enhanced expression of in resistant compared with that in susceptible upon challenge with , revealed that abscisic acid (ABA)-auxin crosstalk is a critical factor for resistance response. Here, we induced the ABA response through conditional expression of in using the -inducible promoter. Induced ABA sensitivity caused by conditional expression of ARF10 in transgenic resulted in tolerance against and led to enhanced expression of several ABA-responsive genes without affecting the auxin biosynthetic gene expression.
View Article and Find Full Text PDFSpecial attention needs to be given to defining and studying the regulatory apparatus of different pararetroviral promoters under various physiological conditions because they have significant sequence heterogeneity and unique distributions of stress-responsive cis-elements. Transcriptional regulation studies of a pararetroviral promoter involve both gene expression analyses and investigation of its structural/regulatory framework. The expression of reporter genes such as β-Glucuronidase (GUS) or Luciferase (LUC) transcriptionally fused to a promoter usually determines the strength or function of a target promoter.
View Article and Find Full Text PDFPlant-infecting viruses, particularly the Pararetroviruses, have been used for many years as versatile genetic resources to design efficient plant expression vectors. The Pararetroviruses (members of the Caulimoviridae) typically contain two transcriptional promoters (the sub-genomic transcript promoter and the full-length transcript promoter) and 6-7 overlapping open reading frames (ORFs) with a genome size of 7-9 kB. Their promoter elements have been extensively exploited during the last two decades to construct effective gene expression systems.
View Article and Find Full Text PDFIn the present study, we have developed an inter-molecularly shuffled caulimoviral promoter for protein over-expression by placing the Upstream Activation Sequence (UAS) of Figwort Mosaic Virus (FMV; -249 to -54) at the 5'-end of the Cassava Vein Mosaic Virus (CsVMV) promoter fragment 8 (CsVMV8; -215 to +166) to design a hybrid promoter; FUASCsV8CP. The FUASCsV8CP promoter exhibited approximately 2.1 and 2.
View Article and Find Full Text PDFCoordinated transcriptional control employing synthetic promoters and transcription factors (TFs) can be used to achieve customized regulation of gene expression in planta. Synthetic promoter technology has yielded a series of promoters with modified cis-regulatory elements that provide useful tools for efficient modulation of gene expression. In addition, the use of zinc fingers (ZFs), transcription activator-like effectors (TALEs), and catalytically inactive clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (dCas9) has made it feasible to engineer TFs that can produce targeted gene expression regulation; these approaches are particularly effective when artificial TFs are coupled with transcriptional activators or repressors.
View Article and Find Full Text PDFDevelopment of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter 'MUASCsV8CP' through inter-molecular hybridization among the upstream activation sequence (UAS) of (MMV; -297 to -38) and CsVMV8, as the core promoter (CP).
View Article and Find Full Text PDFCaulimoviral promoters have become excellent tools for efficient transgene expression in plants. However, the transcriptional framework controlling their systematic regulation is poorly understood. To understand this regulatory mechanism, we extensively studied a novel caulimoviral promoter, PV8 (-163 to +138, 301 bp), isolated from Petunia vein-clearing virus (PVCV).
View Article and Find Full Text PDFThe promoter fragment described in this study can be employed for strong transgene expression under both biotic and abiotic stress conditions. Plant-infecting Caulimoviruses have evolved multiple regulatory mechanisms to address various environmental stimuli during the course of evolution. One such mechanism involves the retention of discrete stress responsive cis-elements which are required for their survival and host-specificity.
View Article and Find Full Text PDFThis paper highlighted a salicylic acid-inducible Caulimoviral promoter fragment from Cestrum yellow leaf curling virus (CmYLCV). Interaction of Arabidopsis transcription factors TGA3 and WRKY53 on CmYLCV promoter resulted in the enhancement of the promoter activity via NPR1-dependent salicylic acid signaling. Several transcriptional promoters isolated from plant-infecting Caulimoviruses are being presently used worldwide as efficient tools for plant gene expression.
View Article and Find Full Text PDF