Publications by authors named "Nozomi Hamasaki"

Purpose: The aim of this study was to investigate imaging conditions that allow for the rapid acquisition of mask images used in the subtraction method, one of the depiction improvement methods for brain magnetic resonance angiography, by employing compressed sensing (CS) combined with segmented time-of-flight (TOF).

Methods: The experiment was performed on healthy volunteers using 3.0T-MRI.

View Article and Find Full Text PDF

Introduction: Recently, three-dimensional (3D) quantitative synthetic magnetic resonance imaging (MRI), which quantifies tissue properties and creates multiple contrast-weighted images, has been enabled by 3D-quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS). However, the relatively long scan time has hindered its introduction into clinical practice. A hybrid of compressed sensing and parallel imaging (Compressed sensing-sensitivity encoding: CS-SENSE) can accelerate 3D-QALAS; however, whether CS-SENSE affects the quantitative values acquired by 3D-QALAS remains unexplored.

View Article and Find Full Text PDF

Purpose: Image contrast differs between conventional multislice turbo spin echo (conventional TSE) and multiband turbo spin echo (SMS-TSE). Difference in time interval between excitations for adjacent slices (SETI) might cause this difference. This study aimed to evaluate the influence of SETI on MT effect for conventional TSE and compare conventional TSE with SMS-TSE in this respect.

View Article and Find Full Text PDF

Mapping of MR fiber g-ratio, which is the ratio of the diameter of the axon to the diameter of the neuronal fiber, is introduced in this article. We investigated the MR fiber g-ratio, the axon volume fraction (AVF) and the myelin volume fraction (MVF) to evaluate microstructural changes in the spinal cord in patients with cervical spondylotic myelopathy (CSM) in vivo, using atlas-based analysis. We used diffusion MRI data acquired with a new simultaneous multi-slice accelerated readout-segmented echo planar imaging sequence for diffusion analysis for AVF calculation and magnetization transfer saturation imaging for MVF calculation.

View Article and Find Full Text PDF

We report two cases of pathologically proven intracranial epidermoid cysts. Both cases were scanned with diffusion-weighted imaging using pulsed gradient spin-echo (PGSE) and oscillating gradient spin-echo (OGSE; 50 Hz) prototype sequences with diffusion times of 47.3 ms and 8.

View Article and Find Full Text PDF

Purpose: To assess the influence of high temporal resolution on the perfusion measurements and image quality of perfusion maps, by applying simultaneous-multi-slice acquisition (SMS) dynamic susceptibility contrast-enhanced (DSC) magnetic resonance imaging (MRI).

Materials And Methods: DSC-MRI data using SMS gradient-echo echo planar imaging sequences in 10 subjects with no intracranial abnormalities were retrospectively analyzed. Three additional data sets with temporal resolution of 1.

View Article and Find Full Text PDF

Proton magnetic resonance spectroscopy (H-MRS) enables the assessment of myocardial triglyceride (TG) content, which is reported to be associated with cardiac dysfunction and morphology accompanied by metabolic disorder and cardiac hemodynamic status. The clinical usefulness of myocardial TG content measurements in patients with left ventricular hypertrophy (LVH) has not been fully investigated. We examined whether myocardial TG content assessed by H-MRS was useful for diagnosis in patients with LVH.

View Article and Find Full Text PDF

Objectives: We investigated changes in the optic tract and optic radiation in patients with multiple sclerosis (MS) by comparing unilateral and bilateral optic nerve damage assessed based on visual evoked potentials (VEPs) using advanced diffusion MR metrics.

Methods: In 21 MS patients, diffusion MRI was performed. Maps of fractional anisotropy, apparent diffusion coefficient (ADC), and mean kurtosis (MK) were computed.

View Article and Find Full Text PDF

Background: Synthetic magnetic resonance imaging (MRI), a technique that enables creation of various contrast-weighted images from a single MRI quantification scan, is a useful clinical tool. However, there are currently no reports examining the use of contrast-enhanced synthetic MRI for detecting brain metastases.

Purpose: To assess whether contrast-enhanced synthetic MRI is suitable for detecting brain metastases.

View Article and Find Full Text PDF

Introduction: Diffusion tensor imaging (DTI) reveals white matter pathology in patients with multiple sclerosis (MS). A recent non-Gaussian diffusion imaging technique, q-space imaging (QSI), may provide several advantages over conventional MRI techniques in regard to in vivo evaluation of the disease process in patients with MS. The purpose of this study is to investigate the use of root mean square displacement (RMSD) derived from QSI data to characterize plaques, periplaque white matter (PWM), and normal-appearing white matter (NAWM) in patients with MS.

View Article and Find Full Text PDF

Diffusional kurtosis imaging (DKI) is a new technique based on non-Gaussian water diffusion analysis. However, the original DKI protocol (six b values and 30 motion-probing gradient (MPG) directions) requires more than 10 min of scanning time, which is too long for daily clinical use. We aimed to find suitable b value, MPG direction, and diffusion time settings for faster DKI.

View Article and Find Full Text PDF

Objectives: To investigate the use of root mean square displacement (RMSD) and mean diffusional kurtosis (DK) metrics of q-space imaging data to estimate spinal cord compression in patients with early cervical spondylosis.

Methods: We studied 50 consecutive patients at our institution (22 male, 28 female; mean age 58 years; age range 20-86 years) who had clinical signs and symptoms suggestive of early clinical stage cervical myelopathy. After conventional magnetic resonance (MR) imaging, diffusion tensor and q-space image data were acquired using 3-T MR imaging.

View Article and Find Full Text PDF

The utility of lacrimal passage contrasting by a digital subtraction system (DS system) was assessed in comparison with a computed radiography system (CR system) by means of simulating the exposure dose of a patient's crystalline lens and measuring the image contrast of both systems. The exposure dose of the patient's crystalline lens in the DS system was an average of 45.8 mGy, which was 41.

View Article and Find Full Text PDF