Prompt personal identification is required during disasters that can result in many casualties. To rapidly estimate sex based on skull structure, this study applied deep learning using two-dimensional silhouette images, obtained from head postmortem computed tomography (PMCT), to enhance the outline shape of the skull. We investigated the process of sex estimation using silhouette images viewed from different angles and majority votes.
View Article and Find Full Text PDFPost-mortem (PM) imaging has potential for identifying individuals by comparing ante-mortem (AM) and PM images. Radiographic images of bones contain significant information for personal identification. However, PM images are affected by soft tissue decomposition; therefore, it is desirable to extract only images of bones that change little over time.
View Article and Find Full Text PDFBackground: Forensic dentistry identifies deceased individuals by comparing postmortem dental charts, oral-cavity pictures and dental X-ray images with antemortem records. However, conventional forensic dentistry methods are time-consuming and thus unable to rapidly identify large numbers of victims following a large-scale disaster.
Objective: Our goal is to automate the dental filing process by using intraoral scanner images.