Publications by authors named "Noymar Luque-Campos"

Osteoarthritis (OA) is the most common degenerative joint disease. Mesenchymal stromal cells (MSC) are promising cell-based therapy for OA. However, there is still a need for additional randomized, dose-dependent studies to determine the optimal dose and tissue source of MSC for improved clinical outcomes.

View Article and Find Full Text PDF

Background: The metabolic reprogramming of mesenchymal stem/stromal cells (MSC) favoring glycolysis has recently emerged as a new approach to improve their immunotherapeutic abilities. This strategy is associated with greater lactate release, and interestingly, recent studies have proposed lactate as a functional suppressive molecule, changing the old paradigm of lactate as a waste product. Therefore, we evaluated the role of lactate as an alternative mediator of MSC immunosuppressive properties and its contribution to the enhanced immunoregulatory activity of glycolytic MSCs.

View Article and Find Full Text PDF

Mitochondrial dysfunction is reiteratively involved in the pathogenesis of diverse neurodegenerative diseases. Current in vitro and in vivo approaches support that mitochondrial dysfunction is branded by several molecular and cellular defects, whose impact at different levels including the calcium and iron homeostasis, energetic balance and/or oxidative stress, makes it difficult to resolve them collectively given their multifactorial nature. Mitochondrial transfer offers an overall solution since it contains the replacement of damage mitochondria by healthy units.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a central event in the pathogenesis of several degenerative brain disorders. It entails fission and fusion dynamics disruption, progressive decline in mitochondrial clearance, and uncontrolled oxidative stress. Many therapeutic strategies have been formulated to reverse these alterations, including replacing damaged mitochondria with healthy ones.

View Article and Find Full Text PDF

Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and tissue differentiation capacity. Several experimental studies in numerous diseases have demonstrated the MSCs' therapeutic effects.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are multipotent adult stromal cells widely studied for their regenerative and immunomodulatory properties. They are capable of modulating macrophage plasticity depending on various microenvironmental signals. Current studies have shown that metabolic changes can also affect macrophage fate and function.

View Article and Find Full Text PDF

Mesenchymal Stem/Stromal Cells (MSC) are promising therapeutic tools for inflammatory diseases due to their potent immunoregulatory capacities. Their suppressive activity mainly depends on inflammatory cues that have been recently associated with changes in MSC bioenergetic status towards a glycolytic metabolism. However, the molecular mechanisms behind this metabolic reprogramming and its impact on MSC therapeutic properties have not been investigated.

View Article and Find Full Text PDF

Hypoxia-inducible factor 1 α (HIF1α), a regulator of metabolic change, is required for the survival and differentiation potential of mesenchymal stem/stromal cells (MSC). Its role in MSC immunoregulatory activity, however, has not been completely elucidated. In the present study, we evaluate the role of HIF1α on MSC immunosuppressive potential.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are multipotent cells with broad immunosuppressive capacities. Recently, it has been reported that MSCs can transfer mitochondria to various cell types, including fibroblast, cancer, and endothelial cells. It has been suggested that mitochondrial transfer is associated with a physiological response to cues released by damaged cells to restore and regenerate damaged tissue.

View Article and Find Full Text PDF

In the last years, mesenchymal stem cell (MSC)-based therapies have become an interesting therapeutic opportunity for the treatment of rheumatoid arthritis (RA) due to their capacity to potently modulate the immune response. RA is a chronic autoimmune inflammatory disorder with an incompletely understood etiology. However, it has been well described that peripheral tolerance defects and the subsequent abnormal infiltration and activation of diverse immune cells into the synovial membrane, are critical for RA development and progression.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8dmfnu2h7v8imsf3a7ujv0trle0bai86): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once