Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus , primarily in the differentiation zone.
View Article and Find Full Text PDFTetramethoxy substituted alkyl-acridiniums (TMAcr) are readily available by facile nucleophilic aromatic substitution on tris(2,6-dimethoxyphenyl)carbenium, but are non-fluorescent, presumably due to intramolecular photoinduced electron transfer quenching. In this work we introduce electron withdrawing groups by electrophilic aromatic substitution reactions, leading to fluorescence turn-on. The acridiniums are moderately fluorescent (φ=20 %) with long fluorescene lifetimes (τ=9 ns).
View Article and Find Full Text PDFTo survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds.
View Article and Find Full Text PDFProgrammed cell death (PCD) is fundamentally important for plant development, abiotic stress responses and immunity, but our understanding of its regulation remains fragmented. Building a stronger research community is required to accelerate progress in this area through knowledge exchange and constructive debate. In this Viewpoint, we aim to initiate a collective effort to integrate data across a diverse set of experimental models to facilitate characterisation of the fundamental mechanisms underlying plant PCD and ultimately aid the development of a new plant cell death classification system in the future.
View Article and Find Full Text PDFDouble fertilization in angiosperms results in the formation of a second zygote, the fertilized endosperm. Unlike its embryo sibling, the endosperm is a transient structure that eventually undergoes developmentally controlled programmed cell death (PCD) at specific time points of seed development or germination. The nature of endosperm PCD exhibits a considerable diversity, both across different angiosperm taxa and within distinct endosperm tissues.
View Article and Find Full Text PDFA key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids.
View Article and Find Full Text PDFProgrammed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here, we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD.
View Article and Find Full Text PDFObjectives: Ischemia-reperfusion injury often coincides with a cytokine storm, which can result in primary graft dysfunction following lung transplantation. Our previous research has demonstrated allograft improvement by cytokine adsorption during ex vivo lung perfusion. The aim of this study was to investigate the effect of in vivo extracorporeal cytokine adsorption in a large animal model.
View Article and Find Full Text PDFIn flowering plants, two fertilization products develop within the limited space of the seed: the embryo and the surrounding nutritive endosperm. The final size of the endosperm is modulated by the degree of embryo growth. In Arabidopsis thaliana, the endosperm expands rapidly after fertilization, but later gets invaded by the embryo that occupies most of the seed volume at maturity, surrounded by a single remaining aleurone-like endosperm layer.
View Article and Find Full Text PDFEndocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development.
View Article and Find Full Text PDFFlowers have a species-specific fertile period during which pollination and fertilization have to occur to initiate seed and fruit development. Unpollinated flowers remain receptive for mere hours in some species, and up to several weeks in others before flower senescence terminates fertility. As such, floral longevity is a key trait subject to both natural selection and plant breeding.
View Article and Find Full Text PDFBackground: Fine-needle aspiration cytology (FNAC) represents an important diagnostic tool for the workup of salivary gland (SG) lesions. The Milan System for Reporting Salivary Gland Cytopathology (MSRSGC) is a six-tiered system for standardizing diagnoses and improvement of communication between pathologists and clinicians, providing risk of malignancy (ROM) rates for every category. The aims of the present study were (i) to validate the use of MSRSGC in a large series of SG FNAC in a tertiary center in Switzerland, (ii) to determine ROM for each category and compare them with data from MSRSGC and similar studies, and (iii) to investigate whether there were relevant differences of non-diagnostic results between fine-needle aspirations (FNA) performed by cytopathologists compared to non-cytopathologists.
View Article and Find Full Text PDFDevelopmental programmed cell death (dPCD) controls a plethora of functions in plant growth and reproduction. In the root cap of Arabidopsis (Arabidopsis thaliana), dPCD functions to control organ size in balance with the continuous stem cell activity in the root meristem. Key regulators of root cap dPCD including SOMBRERO/ANAC033 (SMB) belong to the NAC family of transcription factors.
View Article and Find Full Text PDFGenomic imprinting promotes differential expression of parental alleles in the endosperm of flowering plants and is regulated by epigenetic modification such as DNA methylation and histone tail modifications in chromatin. After fertilization, the endosperm develops through a syncytial stage before it cellularizes and becomes a nutrient source for the growing embryo. Regional compartmentalization has been shown both in early and late endosperm development, and different transcriptional domains suggest divergent spatial and temporal regional functions.
View Article and Find Full Text PDFRegulated or programmed cell death (RCD or PCD) is a fundamental biological principle integral to a considerable variety of functions in multicellular organisms. In plants, different PCD processes are part of biotic and abiotic stress responses, but also occur as an essential aspect of unperturbed plant development. PCD is particularly abundant during plant reproduction, eliminating unwanted or no longer needed cells, tissues, or organs in a precisely controlled manner.
View Article and Find Full Text PDFPlant flowers have a functional life span during which pollination and fertilization occur to ensure seed and fruit development. Once flower senescence is initiated, the potential to set seed or fruit is irrevocably lost. In maize, silk strands are the elongated floral stigmas that emerge from the husk-enveloped inflorescence to intercept airborne pollen.
View Article and Find Full Text PDFAutophagy is a conserved quality control pathway that mediates the degradation of cellular components by targeting them to the lysosomes or vacuoles. Autophagy has been implicated in the regulation of some regulated cell death processes in animal systems. However, its function in developmentally controlled programmed cell death (dPCD) in plants remains little studied and controversial.
View Article and Find Full Text PDFGlycosylphosphatidylinositol-anchored proteins (GPI-APs) are tethered to the outer leaflet of the plasma membrane where they function as key regulators of a plethora of biological processes in eukaryotes. Self-incompatibility (SI) plays a pivotal role regulating fertilization in higher plants through recognition and rejection of "self" pollen. Here, we used Arabidopsis thaliana lines that were engineered to be self-incompatible by expression of Papaver rhoeas SI determinants for an SI suppressor screen.
View Article and Find Full Text PDFFluorescence-activated cell sorting (FACS) allows for the enrichment of specific plant cell populations after protoplasting. In this book chapter, we describe the transformation and protoplasting of an Arabidopsis thaliana cell suspension culture (PSB-D, derived from MM2d) that can be used for the evaluation of CRISPR vectors in a subpopulation of cells. We also describe the protoplasting of Arabidopsis thaliana cells from the roots and stomatal lineage for the evaluation of tissue-specific gene editing.
View Article and Find Full Text PDFCurr Opin Plant Biol
February 2022
Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA.
View Article and Find Full Text PDFPhytopathogenic bacteria inject effector proteins into plant host cells to promote disease. Plant resistance (R) genes encoding nucleotide-binding leucine-rich repeat (NLR) proteins mediate the recognition of functionally and structurally diverse microbial effectors, including transcription-activator like effectors (TALEs) from the bacterial genus Xanthomonas. TALEs bind to plant promoters and transcriptionally activate either disease-promoting host susceptibility (S) genes or cell death-inducing executor-type R genes.
View Article and Find Full Text PDFReverse genetics approaches are routinely used to investigate gene function. However, mutations, especially in critical genes, can lead to pleiotropic effects as severe as lethality, thus limiting functional studies in specific contexts. Approaches that allow for modifications of genes or gene products in a specific spatial or temporal setting can overcome these limitations.
View Article and Find Full Text PDFAims: With ongoing intensive vaccination programme against COVID-19, numerous cases of adverse reactions occur, some of which represent rare events. Enlargement of the injection site’s draining lymph nodes is increasingly reported, but is not yet widely recognised as being possibly associated with recent vaccination. As patients at risk of a severe course of COVID-19, indicated by their medical history such as a previous diagnosis of malignancy, receive priority vaccination, newly palpable lymph nodes raise concerns of disease progression.
View Article and Find Full Text PDF