Publications by authors named "Novotny F"

Article Synopsis
  • The Linearbandkeramik (LBK) Neolithic communities were pioneers in spreading agriculture across Europe and this study showcases genetic data from 250 individuals to understand their ancestry.
  • The findings reveal a notable difference in ancestry, with eastern LBK sites having a higher percentage of western hunter-gatherer genetics compared to western sites, indicating separate genetic paths for these groups.
  • Additionally, the research suggests a patrilocal social structure, featuring more genetic connections among males within sites, and points out that the massacre at Asparn-Schletz likely involved individuals from a large population rather than a small community.
View Article and Find Full Text PDF

Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser.

View Article and Find Full Text PDF

Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P.

View Article and Find Full Text PDF
Article Synopsis
  • Two COVID-19 outbreaks in Switzerland in 2020 led to changes in treatment approaches based on new medical evidence, with a study focusing on patient outcomes during these waves.
  • A total of 2,983 hospitalized patients were analyzed, finding similar in-hospital mortality rates between the first wave (16.3%) and the second wave (16.0%), but notable differences in ICU admissions and treatments used.
  • During the second wave, fewer patients were admitted to the ICU but had higher mortality rates; corticosteroids became the main treatment compared to previous use of medications like hydroxychloroquine, leading to a 25% reduction in mortality risk overall during the second wave.
View Article and Find Full Text PDF

This article presents a basic study of knowledge in the research and development of specific gripping elements based on the principle of adhesion. It summarizes the use of materials with a high degree of surface adhesion in the design of gripping elements usable in industry to provide stable gripping of objects during automatic manipulation. The principle of a combined element proposed by the authors, where the gripping force is derived through both vacuum and adhesion, is presented.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces innovative microrobots made from MXene-derived materials that can self-propel in three-dimensional spaces and capture nanoplastics through a unique combination of magnetic and photocatalytic properties.
  • * These microrobots serve as efficient tools for concentrating and detecting nanoplastics in water, suggesting a promising approach for on-site screening and potential cleanup efforts.
View Article and Find Full Text PDF

Mobile self-propelled micro/nanorobots are mobile binding surface that improved the sensitivity of many biosensing system by "on-the-fly" identification and isolation of different biotargets. Proteins are powerful tools to predict infectious disease progression such as COVID-19. The main methodology used to COVID-19 detection is based on ELISA test by antibodies detection assays targeting SARS-CoV-2 virus spike protein and nucleocapside protein that represent an indirect SARS-CoV-2 detection with low sentitivy and specificity.

View Article and Find Full Text PDF

Transfection is based on nonviral delivery of nucleic acids or proteins into cells. Viral approaches are being used; nevertheless, their translational capacity is nowadays decreasing due to persistent fear of their safety, therefore creating space for the field of nanotechnology. However, nanomedical approaches introducing static nanoparticles for the delivery of biologically active molecules are very likely to be overshadowed by the vast potential of nanorobotics.

View Article and Find Full Text PDF

Purpose: Plasmonic photothermal cancer therapy by gold nanorods (GNRs) emerges as a promising tool for cancer treatment. The goal of this study was to design cationic oligoethylene glycol (OEG) compounds varying in hydrophobicity and molecular electrostatic potential as ligand shells of GNRs. Three series of ligands with different length of OEG chain (ethylene glycol units = 3, 4, 5) and variants of quaternary ammonium salts (QAS) as terminal functional group were synthesized and compared to a prototypical quaternary ammonium ligand with alkyl chain - (16-mercaptohexadecyl)trimethylammonium bromide (MTAB).

View Article and Find Full Text PDF

Milli/micro/nanorobots are considered smart devices able to convert energy taken from different sources into mechanical movement and accomplish the appointed tasks. Future advances and realization of these tiny devices are mostly limited by the narrow window of material choices, the fuel requirement, multistep surface functionalization, rational structural design, and propulsion ability in complex environments. All these aspects call for intensive improvements that may speed up the real application of such miniaturized robots.

View Article and Find Full Text PDF

The actuation of micro/nanomachines by means of a magnetic field is a promising fuel-free way to transport cargo in microscale dimensions. This type of movement has been extensively studied for a variety of micro/nanomachine designs, and a special magnetic field configuration results in a near-surface walking. We developed "walking" micromachines which transversally move in a magnetic field, and we used them as microrobotic scalpels to enter and exit an individual cancer cell and cut a small cellular fragment.

View Article and Find Full Text PDF

Herein, we successfully incorporated pnictogen-Au@AgNR composites, produced by mixing shear exfoliated pnictogen nanosheets with silver shell, gold core nanorods (Au@AgNRs), as novel electrode materials towards the development of a non-enzymatic electrochemical glucose sensor. The findings of this study conceptually prove the feasibility of incorporating pnictogen-based composites for future development of electrochemical sensors.

View Article and Find Full Text PDF

Self-propelled autonomous nano/microswimmers are at the forefront of materials science. These swimmers are expected to operate in highly confined environments, such as between the grains of soil or in the capillaries of the human organism. To date, little attention is paid to the problem that in such a confined environment the fuel powering catalytic nano/microswimmers can be exhausted quickly and the space can be polluted with the product of the catalytic reaction.

View Article and Find Full Text PDF

Additive manufacturing (AM) represents one of the nine pillars of the new industrial revolution. Owing to the enthusiastic utilization of this technology by the wider professional and amateur communities, AM is becoming a driving force in the manufacturing sector due to its fast expansion and the availability of cheap and robust 3D printers. The 3D printing, especially the fused deposition modeling (FDM) method, has previously been utilized to fabricate carbon/polylactic acid (PLA) electrodes for electrochemical setups.

View Article and Find Full Text PDF

The emerging field of self-propelling micro/nanorobots is teeming with a wide variety of novel micro/nanostructures, which are tested here for self-propulsion in a liquid environment. As the size of these microscopic movers diminishes into the fully nanosized region, the ballistic paths of an active micromotor become a random walk of colloidal particles. To test such colloidal samples for self-propulsion, the commonly adopted "golden rule" is to refer to the mean squared displacement (MSD) function of the measured particle tracks.

View Article and Find Full Text PDF

Self-propelled micromachines have recently attracted lots of attention for environmental remediation. Developing a large-scale but template-free fabrication of self-propelled rod/tubular micro/nanomotors is very crucial but still challenging. Here, a new strategy based on vertically aligned ZnO arrays is employed for the large-scale and template-free fabrication of self-propelled ZnO-based micromotors with H O -free light-driven propulsion ability.

View Article and Find Full Text PDF

Nano/micromotors based on biodegradable and biocompatible polymers represent a progressively developing group of self-propelled artificial devices capable of delivering biologically active compounds to target sites. The majority of these machines are micron sized, and biologically active compounds are simply attached to their surface. Micron-sized devices cannot enter cells, but they provide rapid velocity, which scales down with the size of the device; nanosized devices can enter cells, but their velocity is negligible.

View Article and Find Full Text PDF

Light-driven micro/nanomotors represent the next generation of automotive devices that can be easily actuated and controlled by using an external light source. As the field evolves, there is a need for developing more sophisticated micromachines that can fulfill diverse tasks in complex environments. Herein, we introduce single-component BiVO micromotors with well-defined micro/nanostructures that can swim both individually and as collectively assembled entities under visible-light irradiation.

View Article and Find Full Text PDF

Nature and its highly sophisticated biomaterials are an endless source of inspiration for engineers and scientists across a wide range of disciplines. During the last decade, concepts of bioinspired synthesis of hierarchically structured nano- and micromaterials have been attracting increasing attention. In this article, we have utilized the natural ability of fungi to absorb metal ions for a bioinspired synthesis of carbonaceous material doped by selected transition metals.

View Article and Find Full Text PDF

Three-dimensional (3D) printing technologies are emerging as an important tool for the manufacturing of electrodes for various electrochemistry applications. It has been previously shown that metal 3D electrodes, modified with metal oxides, are excellent catalysts for various electrochemical energy and sensing applications. However, the metal 3D printing process, also known as selective laser melting, is extremely costly.

View Article and Find Full Text PDF

Additive manufacturing provides a unique tool for prototyping structures toward electrochemical sensing, due to its ability to produce highly versatile, tailored-shaped devices in a low-cost and fast way with minimized waste. Here we present 3D-printed graphene electrodes for electrochemical sensing. Ring- and disc-shaped electrodes were 3D-printed with a Fused Deposition Modeling printer and characterized using cyclic voltammetry and scanning electron microscopy.

View Article and Find Full Text PDF

The exceptionally high cellular uptake of gold nanorods (GNRs) bearing cationic surfactants makes them a promising tool for biomedical applications. Given the known specific toxic and stress effects of some preparations of cationic nanoparticles, the purpose of this study was to evaluate, in an in vitro and in vivo in mouse, the potential harmful effects of GNRs coated with (16-mercaptohexadecyl)trimethylammonium bromide (GNRs). Interestingly, even after cellular accumulation of high amounts of GNRs sufficient for induction of photothermal effect, no genotoxicity (even after longer-term accumulation), induction of autophagy, destabilization of lysosomes (dominant organelles of their cellular destination), alterations of actin cytoskeleton, or in cell migration could be detected in vitro.

View Article and Find Full Text PDF

The reactive hemophagocytic syndrome comes from an overstimulation of the immune system which causes a cytokine storm. This is a life-threatening condition caracterised by a febrile cytopenia, hepatosplenomegaly and multi-organ failure. The diagnosis is not easy and the HScore can be useful, looking at hyperferritinemia, hypertriglyceridemia, and hypofibrinogenemia.

View Article and Find Full Text PDF

Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs' properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB), GNRs, show excellent cellular uptake.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory disease affecting 1-3% of the general population. Due to the chronic nature of the disease, patients suffer from substantial psychosocial impact and impaired quality of life. Dr Michaels® (also branded as Soratinex®), an Australian series of topical herbal products, has been showing promising results for the treatment of patients with chronic plaque psoriasis and consequent improvement in their quality of life.

View Article and Find Full Text PDF