Publications by authors named "Novosadova e"

Neuroinflammation is considered to be one of the driving factors in Parkinson's disease (PD). This study was conducted using neuronal and glial cell cultures differentiated from induced pluripotent stem cells (iPSC) of healthy donors (HD) and PD patients with different mutations (PD). Based on the results of RNA sequencing, qPCR and ELISA, we revealed transcriptional and post-transcriptional changes in HD and PD neurons cultivated in HD and PD glial-conditioned medium.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most serious movement disorder, but the actual cause of this disease is still unknown. Induced pluripotent stem cell-derived neural cultures from PD patients carry the potential for experimental modeling of underlying molecular events. We analyzed the RNA-seq data of iPSC-derived neural precursor cells (NPCs) and terminally differentiated neurons (TDNs) from healthy donors (HD) and PD patients with mutations in published previously.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Despite numerous studies, the causes of this pathology remain completely unknown. This is, among other things, due to the difficulty of obtaining biological material for analysis.

View Article and Find Full Text PDF

The production and transplantation of functionally active human neurons is a promising approach to cell therapy. Biocompatible and biodegradable matrices that effectively promote the growth and directed differentiation of neural precursor cells (NPCs) into the desired neuronal types are very important. The aim of this study was to evaluate the suitability of novel composite coatings (CCs) containing recombinant spidroins (RSs) rS1/9 and rS2/12 in combination with recombinant fused proteins (FP) carrying bioactive motifs (BAP) of the extracellular matrix (ECM) proteins for the growth of NPCs derived from human induced pluripotent stem cells (iPSC) and their differentiation into neurons.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative pathology caused by the progressive loss of dopaminergic neurons in the substantia nigra. Juvenile PD is known to be strongly associated with mutations in the PARK2 gene encoding E3 ubiquitin ligase Parkin. Despite numerous studies, molecular mechanisms that trigger PD remain largely unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative diseases characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra. Mutations in the gene are a frequent cause of familial forms of PD. Sustained chronic neuroinflammation in the central nervous system makes a significant contribution to neurodegeneration events.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a complex systemic disorder caused by neurodegenerative processes in the brain that are mainly characterized by progressive loss of dopaminergic neurons in the substantia nigra. About 10% of PD cases have been linked to specific gene mutations (Zafar and Yaddanapudi, 2022) including the gene that encodes a RING domain-containing E3 ubiquitin ligase Parkin. PD-Parkin patients have a younger onset, longer disease duration, and more severe clinical symptoms in comparison to PD patients with unknown causative PD mutations (Zhou et al.

View Article and Find Full Text PDF

Oxidative stress (OS) is implicated in the pathogenesis of several neurodegenerative diseases. We have previously shown that N-acyl dopamines (N-ADA and N-DDA) protect the neural cells of healthy donors and patients with Parkinson's disease from OS. In this study, we assessed the effects of N-acyl dopamines on the expression of neurotrophic factors in human-induced pluripotent stem cell-derived neuronal cultures enriched with dopaminergic neurons under conditions of OS induced by hydrogen peroxide.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a widespread severe neurodegenerative disease that is characterized by pronounced deficiency of the dopaminergic system and disruption of the function of other neuromodulator systems. Although heritable genetic factors contribute significantly to PD pathogenesis, only a small percentage of sporadic cases of PD can be explained using known genetic risk factors. Due to that, it could be inferred that changes in gene expression could be important for explaining a significant percentage of PD cases.

View Article and Find Full Text PDF

Template activating factor-I (TAF-I) is a multifunctional protein involved in various biological processes including the inhibition of histone acetylation, DNA replication, cell cycle regulation, and oncogenesis. Two main TAF-I isoforms with different N-termini, TAF-Iα and TAF-Iβ (SET), are expressed in cells. There are numerous data about functional properties of TAF-Iβ, whereas the effects of TAF-Iα remain largely unexplored.

View Article and Find Full Text PDF

Human induced pluripotent stem (iPS) cells have the potential to give rise to a new era in Parkinson's disease (PD) research. As a unique source of midbrain dopaminergic (DA) neurons, iPS cells provide unparalleled capabilities for investigating the pathogenesis of PD, the development of novel anti-parkinsonian drugs, and personalized therapy design. Significant progress in developmental biology of midbrain DA neurons laid the foundation for their efficient derivation from iPS cells.

View Article and Find Full Text PDF

The prominent protective effects in diverse neuron injury paradigms exerted by cannabinoids and in particular their endogenously produced species render the endocannabinoid system a promising molecular target in the treatment of neurodegenerative diseases. However, the effects of individual endocannabinoids in human cells remain poorly investigated. Neural derivatives of human induced pluripotent stem cells (iPSC) offer unique opportunities for studying the neuroprotective compounds and development of patient-specific treatment.

View Article and Find Full Text PDF

IPSC line RCPCMi004-A was generated from skin fibroblasts collected from a male patient with early onset Parkinson's disease. The patient carries a heterozygous deletion of the exon 2 of PARK2 gene. The reprogramming of fibroblasts was performed with Sendai viruses containing Oct-4, Sox-2, Klf-4 and c-Myc.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. In most cases, the development of the disease is sporadic and is not associated with any currently known mutations associated with PD. It is believed that changes associated with the epigenetic regulation of gene expression may play an important role in the pathogenesis of this disease.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative pathology resulting from the degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). Neurotrophic factors (NTFs) and their receptors are key regulators of the survival, differentiation, and development of neurons. However, the role of these factors in the pathogenesis of PD is still unclear.

View Article and Find Full Text PDF

Development of therapeutic preparations involves several steps, starting with the synthesis of chemical compounds and testing them in different models for selecting the most effective and safest ones to clinical trials and introduction into medical practice. Cultured animal cells (both primary and transformed) are commonly used as models for compound screening. However, cell models display a number of disadvantages, including insufficient standardization (primary cells) and disruption of cell genotypes (transformed cells).

View Article and Find Full Text PDF

Background: Bronchoalveolar lavage (BAL) as complementary method is still used as ancillary tool in diagnosis of interstitial lung diseases. Tobacco smoking has been described to affect the BAL lavage cellular profile. To our knowledge, only few reports have so far investigated CD3CD4 and CD3CD8 lymphocyte subsets in non-smoking sarcoidosis patients additionally stratified according to CXR stage, and compared them to other non-smoking patients with interstitial lung diseases (ILDs).

View Article and Find Full Text PDF

The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is increasingly used for detection of various macromolecules and metabolites in biological samples. Here, we present a detailed analysis of the CuAAC reaction conditions in cells and tissue sections. Using the optimized CuAAC conditions, we have devised a highly sensitive immunostaining technique, based on the tyramide signal amplification/catalyzed reporter deposition (TSA/CARD) method with a novel alkyne tyramide substrate.

View Article and Find Full Text PDF

Ionotropic glutamate and GABA receptors regulate the differentiation and determine the functional properties of mature neurons. Both insufficient and excessive activity of these neurotransmission systems are associated with various nervous system diseases. Our knowledge regarding the expression profiles of these receptors and the mechanisms of their regulation during the differentiation of specialized human neuron subtypes is limited.

View Article and Find Full Text PDF

The prevalent form of familial parkinsonism is caused by mutations in the LRRK2 gene encoding for the mitochondrial protein kinase. In the review, we discuss possible causes of appearance of tetraploid cells in neuronal precursors obtained from induced pluripotent stem cells from patients with the LRRK2-associated form of parkinsonism after genome editing procedure. As LRRK2 protein participates in cell proliferation and maintenance of the nuclear envelope, spindle fibers, and cytoskeleton, mutations in the LRRK2 gene can affect protein functions and lead, via various mechanisms, to the mitotic machinery disintegration and chromosomal aberration.

View Article and Find Full Text PDF

We performed a cytogenetic analysis of the results of CRISPR/Cas9-correction of G2019S mutation in LRRK2 gene associated with Parkinson's disease. Genome editing was performed on induced pluripotent stem cells derived from fibroblasts of a patient carrying this mutation. A mosaic variant of tetraploidy 92 XXYY/46,XY (24-43% cells from various clones) was found in neuronal precursors differentiated from the induced pluripotent stem cells after gene editing procedure.

View Article and Find Full Text PDF

Background And Objective: MicroRNA (miRNA) are transcriptional regulators implicated in pulmonary sarcoidosis and packaged in extracellular vesicles (EV) during cellular communication. We characterized EV and investigated miRNA expression in bronchoalveolar lavage (BAL) fluid from sarcoidosis patients.

Methods: EV were characterized for size(s) using dynamic light scattering and transmission electron microscopy (TEM) analysis and protein markers by immunoblotting.

View Article and Find Full Text PDF

Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range.

View Article and Find Full Text PDF

Differential expression of type 1 cannabinoid receptors (CR1) was evaluated at different stages of human skin fibroblast transformation into terminally differentiated neurons. Immunocytochemical staining detected no CR1 on fibroblasts, but their transformation into induced pluripotent stem cells was accompanied by marked stimulation of CR1 expression. In neuronal precursors, the receptors were located mainly on cell bodies and at the base of their processes.

View Article and Find Full Text PDF