Publications by authors named "Novoplansky A"

Article Synopsis
  • Newly discovered plant behaviors suggest that plants have complex information processing systems and demonstrate agency and learning, challenging traditional views of their capabilities.
  • Research on plant plasticity highlights their responses to environmental factors and the interactions with neighboring plants for resource competition and coordination.
  • Emerging climate-smart agricultural practices, informed by a deeper understanding of plant behavior, aim to enhance crop resilience and productivity, benefiting both natural and agricultural ecosystems.
View Article and Find Full Text PDF

Plants display various forms of phenotypic plasticity in anticipation of changing conditions, many of which are influenced by information obtained from neighbouring plants. Here, we tested the hypothesis that cleistogamic Lamium amplexicaule plants can adaptively modify production of chasmogamous (CH) and cleistogamous (CL) flowers based on the perception of conspecific neighbours. The production and proportion of CH and CL flowers was examined in individual L.

View Article and Find Full Text PDF

Plants readily communicate with their pollinators, herbivores, symbionts, and the predators and pathogens of their herbivores. We previously demonstrated that plants could exchange, relay, and adaptively utilize drought cues from their conspecific neighbors. Here, we studied the hypothesis that plants can exchange drought cues with their interspecific neighbors.

View Article and Find Full Text PDF

We have recently demonstrated that root cuing from drought-stressed plants increased the survival time of neighboring plants under drought, which came at performance costs under benign conditions. The involvement of abscisic acid (ABA) was implicated from additional experiments in which interplant drought cuing was greatly diminished in ABA-deficient plants. Here, we tested the hypothesis that ABA is the exogenous vector of interplant drought cuing.

View Article and Find Full Text PDF
What plant roots know?

Semin Cell Dev Biol

August 2019

Despite their paramount role in plant life, the study of roots has been largely neglected until recently. Here, I shortly describe a few newly-discovered abilities of plants to undergo adaptive changes and execute developmental decisions based on roots' perception of non-resource information pertaining to imminent challenges and opportunities. Seemingly simple in their morphology and architecture and lacking central information-processing centres, roots are able to sense and integrate complex cues and signals over time and space that allow plants to perform elaborate behaviours analogous, some claim even homologous, to those of intelligent animals.

View Article and Find Full Text PDF

The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants.

View Article and Find Full Text PDF

It has been suggested that architectural plasticity in shoot size and number allows plants to manage environmental risks. Simpler structures require shorter development times and fewer resources, which secure minimal fitness even under risky and unfavourable conditions. Here we tested the hypothesis that the magnitude of such architectural plasticity depends on the species' developmental strategy.

View Article and Find Full Text PDF

Using experimentally induced disruptive selection, we tested two hypotheses regarding the evolution of specialization in parasites. The 'trade-off' hypothesis suggests that adaptation to a specific host may come at the expense of a reduced performance when exploiting another host. The alternative 'relaxed selection' hypothesis suggests that the ability to exploit a given host would deteriorate when becoming obsolete.

View Article and Find Full Text PDF

Size variability in plants may be underlain by overlooked components of architectural plasticity. In annual plants, organ sizes are expected to depend on the availability and reliability of resources and developmental time. Given sufficient resources and developmental time, plants are expected to develop a greater number of large branches, which would maximize fitness in the long run.

View Article and Find Full Text PDF
Article Synopsis
  • Phenotypic plasticity in plants allows them to adapt to environmental stresses by perceiving and responding to cues from nearby damaged plants.
  • The study tested how unstressed plants react to stress signals from drought- and osmotic-stressed neighbors through experiments with split-root systems.
  • Results showed that while stressed plants closed their stomata in response to stress, unstressed neighbors adapted by eventually reopening their stomata, highlighting a new form of plant communication that could prepare them for future stresses.
View Article and Find Full Text PDF

Recent evidence demonstrates that plants are able not only to perceive and adaptively respond to external information but also to anticipate forthcoming hazards and stresses. Here, we tested the hypothesis that unstressed plants are able to respond to stress cues emitted from their abiotically-stressed neighbors and in turn induce stress responses in additional unstressed plants located further away from the stressed plants. Pisum sativum plants were subjected to drought while neighboring rows of five unstressed plants on both sides, with which they could exchange different cue combinations.

View Article and Find Full Text PDF

Plants are able to discriminately allocate greater biomass to organs that grow under higher resource levels. Recent evidence demonstrates that split-root plants also discriminately allocate more resources to roots that grow under dynamically improving nutrient levels, even when their other roots grow in richer patches. Here, we further tested whether, besides their responsiveness to the direction of resource gradients, plants are also sensitive to the steepness of environmental trajectories.

View Article and Find Full Text PDF

Background And Aims: Plants are able to tolerate tissue loss through vigorous branching which is often triggered by release from apical dominance and activation of lateral meristems. However, damage-induced branching might not be a mere physiological outcome of released apical dominance, but an adaptive response to environmental signals, such as damage timing and intensity. Here, branching responses to both factors were examined in the annual plant Medicago truncatula.

View Article and Find Full Text PDF

Plants are known to be highly responsive to environmental heterogeneity and normally allocate more biomass to organs which grow in richer patches. However, recent evidence demonstrates that plants can discriminately allocate more resources to roots that develop in patches with increasing nutrient levels, even when their other roots develop in richer patches. Responsiveness to the direction and steepness of spatial and temporal trajectories of environmental variables might enable plants to increase their performance by improving their readiness to anticipated resource availabilities in their immediate proximity.

View Article and Find Full Text PDF

Plants have been recognized to be capable of allocating more roots to rich patches in the soil. We tested the hypothesis that in addition to their sensitivity to absolute differences in nutrient availability, plants are also responsive to temporal changes in nutrient availability. Different roots of the same Pisum sativum plants were subjected to variable homogeneous and heterogeneous temporally - dynamic and static nutrient regimes.

View Article and Find Full Text PDF

Plants are limited in their ability to choose their neighbours, but they are able to orchestrate a wide spectrum of rational competitive behaviours that increase their prospects to prevail under various ecological settings. Through the perception of neighbours, plants are able to anticipate probable competitive interactions and modify their competitive behaviours to maximize their long-term gains. Specifically, plants can minimize competitive encounters by avoiding their neighbours; maximize their competitive effects by aggressively confronting their neighbours; or tolerate the competitive effects of their neighbours.

View Article and Find Full Text PDF

Recent studies suggest that plant roots can avoid competition with other roots of the same plant, but the mechanism behind this behavior is yet largely unclear and their effects on plant performance hardly studied. We grew combinations of two ramets of Trifolium repens in a single pot that were either intact, disconnected for a shorter or longer time, or that belonged to different genotypes. Interconnected ramets developed lower root length and mass than any other combination of ramets, supporting the notion that self/non-self discrimination in T.

View Article and Find Full Text PDF

Arid environments are characterized by limited and variable rainfall that supplies resources in pulses. Resource pulsing is a special form of environmental variation, and the general theory of coexistence in variable environments suggests specific mechanisms by which rainfall variability might contribute to the maintenance of high species diversity in arid ecosystems. In this review, we discuss physiological, morphological, and life-history traits that facilitate plant survival and growth in strongly water-limited variable environments, outlining how species differences in these traits may promote diversity.

View Article and Find Full Text PDF

Recent evidence suggests that self/non-self discrimination exists among roots; its mechanisms, however, are still unclear. We compared the growth of Buchloe dactyloides cuttings that were grown in the presence of neighbors that belonged to the same physiological individual, were separated from each other for variable periods, or originated from adjacent or remote tillers on the same clone. The results demonstrate that B.

View Article and Find Full Text PDF

Resource availability is often characterized by mean annual amounts, while ignoring the spatial variation within habitats and the temporal variation within a year. Yet, temporal and spatial variation may be especially important for identifying the source of stress in low productivity environments such as deserts where resources are often pulsed and resource renewal events are separated by long periods of low resource availability. Therefore, the degree of stress will be determined in part by the length of time between recharge events.

View Article and Find Full Text PDF

•  The performance of the whole plant is largely dependent on its ability to allocate limited resources to branches that perform best throughout its life. Here, the hypothesis that the fate of young branches is determined by their growth rates and not merely by their relative physical sizes or net photosynthetic outputs was tested. •  The development of asymmetrical two-branch plants was followed after either one or both of the branches were restrained for short periods.

View Article and Find Full Text PDF

Portulaca oleracea seedlings avoid growing in the direction of neighbouring plants even when they are very small or remote. The present study was designed to determine the relative effect on the development of Portulaca seedlings of light availability (i.e.

View Article and Find Full Text PDF

Portulaca oleracea L. seedlings do not develop in the direction of neighbours, even when these neighbours are small and distant. Neighbouring plants could be simulated by small rectangles of a plastic that resembled leaves in its spectral characteristics.

View Article and Find Full Text PDF