Background: Many organizations face challenges in managing and analyzing data, especially when relevant datasets arise from multiple sources and methods. Analyzing heterogeneous datasets and additional derived data requires rigorous tracking of their interrelationships and provenance. This task has long been a Grand Challenge of data science and has more recently been formalized in the FAIR principles: that all data objects be Findable, Accessible, Interoperable, and Reusable, both for machines and for people.
View Article and Find Full Text PDFThe profiling of 16S rRNA revolutionized the exploration of microbiomes, allowing to describe community composition by enumerating relevant taxa and their abundances. However, taxonomic profiles alone lack interpretability in terms of bacterial metabolism, and their translation into functional characteristics of microbiomes is a challenging task. This bottom-up approach minimally requires a reference collection of major metabolic traits deduced from the complete genomes of individual organisms, an accurate method of projecting these traits from a reference collection to the analyzed amplicon sequence variants (ASVs), and, ultimately, an approach to a microbiome-wide aggregation of predicted individual traits into physiologically relevant cumulative metrics to characterize and compare multiple microbiome samples.
View Article and Find Full Text PDFA nitrate- and metal-contaminated site at the Oak Ridge Reservation (ORR) was previously shown to contain the metal molybdenum (Mo) at picomolar concentrations. This potentially limits microbial nitrate reduction, as Mo is required by the enzyme nitrate reductase, which catalyzes the first step of nitrate removal. Enrichment for anaerobic nitrate-reducing microbes from contaminated sediment at the ORR yielded strain EB106-08-02-XG196.
View Article and Find Full Text PDFsp. strain EB106-08-02-XG196 was isolated from a high-nitrate- and heavy metal-contaminated site at the Oak Ridge Reservation in Tennessee. We report the draft genome sequence of this strain to provide insights into the genomic basis for surviving in this unique environment.
View Article and Find Full Text PDFBacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized.
View Article and Find Full Text PDFThe human gut microbiome harbors a diverse array of metabolic pathways contributing to its development and homeostasis via a complex web of diet-dependent metabolic interactions within the microbial community and host. Genomics-based reconstruction and predictive modeling of these interactions would provide a framework for diagnostics and treatment of dysbiosis-related syndromes via rational selection of therapeutic prebiotics and dietary nutrients. Of particular interest are micronutrients, such as B-group vitamins, precursors of indispensable metabolic cofactors, that are produced by some gut bacteria (prototrophs) but must be provided exogenously in the diet for many other bacterial species (auxotrophs) as well as for the mammalian host.
View Article and Find Full Text PDFThe central carbon/lactate utilization pathway in the model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough, is encoded by the highly conserved operon DVU3025-3033. Our earlier in vitro genome-wide study had suggested a network of four two-component system regulators that target this large operon; however, how these four regulators control this operon was not known. Here, we probe the regulation of the lactate utilization operon with mutant strains and DNA-protein binding assays.
View Article and Find Full Text PDFA major challenge in genomics is the knowledge gap between sequence and its encoded function. Gain-of-function methods based on gene overexpression are attractive avenues for phenotype-based functional screens, but are not easily applied in high-throughput across many experimental conditions. Here, we present Dual Barcoded Shotgun Expression Library Sequencing (Dub-seq), a method that uses random DNA barcodes to greatly increase experimental throughput.
View Article and Find Full Text PDFEnviron Microbiol
February 2019
Bacterial genes for molybdenum-containing and tungsten-containing enzymes are often differentially regulated depending on the metal availability in the environment. Here, we describe a new family of transcription factors with an unusual DNA-binding domain related to excisionases of bacteriophages. These transcription factors are associated with genes for various molybdate and tungstate-specific transporting systems as well as molybdo/tungsto-enzymes in a wide range of bacterial genomes.
View Article and Find Full Text PDFIn the original version of this Article, an incorrect URL was provided in the Data Availability Statement regarding the deposition of plasmids listed in Supplementary Table 4. The correct URL is https://public-registry.jbei.
View Article and Find Full Text PDFTightly regulated promoters are essential for numerous biological applications, where strong inducibility, portability, and scalability are desirable. Current systems are often incompatible with large-scale fermentations due to high inducer costs and strict media requirements. Here, we describe the bottom-up engineering of 'Jungle Express', an expression system that enables efficient gene regulation in diverse proteobacteria.
View Article and Find Full Text PDFBacterial response to metals can require complex regulation. We report an overlapping regulation for copper and zinc resistance genes in the denitrifying bacterium, Pseudomonas stutzeri RCH2, by three two-component regulatory proteins CopR1, CopR2 and CzcR. We conducted genome-wide evaluations to identify gene targets of two paralogous regulators, CopR1 and CopR2, annotated for copper signaling, and compared the results with the gene targets for CzcR, implicated in zinc signaling.
View Article and Find Full Text PDFWe present here the draft genome sequences of two strains, GW456P and GW458P, isolated from groundwater samples collected from a background site at the Oak Ridge Field Research Center. Production of a purple pigment by these two strains was observed when grown on diluted (1/10) LB agar plates.
View Article and Find Full Text PDFComparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of . Overall, we predict over 10 600 TF binding sites and identified more than 15 600 target genes for 1896 TFs constituting the studied orthologous groups of regulators.
View Article and Find Full Text PDFHexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water in several DOE sites, including Hanford 100 H area. In order to stimulate microbially mediated reduction of Cr(VI) at this site, a poly-lactate hydrogen release compound was injected into the chromium contaminated aquifer. Targeted enrichment of dominant nitrate-reducing bacteria post injection resulted in the isolation of strain RCH2.
View Article and Find Full Text PDFUnlabelled: Metal ion transport systems have been studied extensively, but the specificity of a given transporter is often unclear from amino acid sequence data alone. In this study, predicted Cu(2+) and Zn(2+) resistance systems in Pseudomonas stutzeri strain RCH2 are compared with those experimentally implicated in Cu(2+) and Zn(2+) resistance, as determined by using a DNA-barcoded transposon mutant library. Mutant fitness data obtained under denitrifying conditions are combined with regulon predictions to yield a much more comprehensive picture of Cu(2+) and Zn(2+) resistance in strain RCH2.
View Article and Find Full Text PDFBackground: The σ(54) subunit controls a unique class of promoters in bacteria. Such promoters, without exception, require enhancer binding proteins (EBPs) for transcription initiation. Desulfovibrio vulgaris Hildenborough, a model bacterium for sulfate reduction studies, has a high number of EBPs, more than most sequenced bacteria.
View Article and Find Full Text PDFUnlabelled: Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date.
View Article and Find Full Text PDFMethionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ∼ 200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria.
View Article and Find Full Text PDFAlthough the enzymes for dissimilatory sulfate reduction by microbes have been studied, the mechanisms for transcriptional regulation of the encoding genes remain unknown. In a number of bacteria the transcriptional regulator Rex has been shown to play a key role as a repressor of genes producing proteins involved in energy conversion. In the model sulfate-reducing microbe Desulfovibrio vulgaris Hildenborough, the gene DVU_0916 was observed to resemble other known Rex proteins.
View Article and Find Full Text PDFDNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes.
View Article and Find Full Text PDFThe multidrug-resistant, opportunistic pathogen, Acinetobacter baumannii, has spread swiftly through hospitals worldwide. Previously, we demonstrated that A. baumannii regulates the expression of various genes in response to DNA damage.
View Article and Find Full Text PDF