This paper reports on the synthesis and relaxivity properties of tetraacetic DOTA-type chelating agents featuring one or two alkyne groups directly grafted on the tetraaza macrocyclic ring and available for "click" reactions with azide-bearing substrates. The racemic DOTAma ligand bearing one alkyne group was obtained by a bisaminal template route. The same approach was used to prepare ligand DOTAda substituted by two alkyne groups located on two adjacent carbon atoms.
View Article and Find Full Text PDFThe synthesis, lanthanide complexation, and solvent extraction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respectively.
View Article and Find Full Text PDFThe new ligand 6,6''-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2':6',2''-terpyridine (CyMe4-BTTP) has been synthesized in 4 steps from 2,2':6',2''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1:2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1:1 complexes are formed with lanthanide(III) nitrates where the rings are conformationally mobile. An optimized structure of the 1:2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts.
View Article and Find Full Text PDFWe report here experimental evidence for the formation in the solid state of a new binuclear Fe (III) 2(mu-OMe) 2(HL) 4 complex (H 2L is 2-salicyloylhydrazono-1,3-dithiolane). The isostructural Mn (III) 2(mu-OMe) 2(HL) 4 complex has provided the strongest ferromagnetic interaction value (J approximately 20 cm (-1)) between Mn (III) ions to date. The new iron binuclear compound presented in this study shows antiferromagnetic intramolecular coupling, which agrees with the theoretical study that we previously proposed.
View Article and Find Full Text PDF