Cellular bioenergetics requires an intense ATP turnover that is increased further by hypermetabolic states caused by cancer growth or inflammation. Both are associated with metabolic alterations and, notably, enhancement of the Warburg effect (also known as aerobic glycolysis) of poor efficiency with regard to glucose consumption when compared to mitochondrial respiration. Therefore, beside this efficiency issue, other properties of these two pathways should be considered to explain this paradox: (1) biosynthesis, for this only indirect effect should be considered, since lactate release competes with biosynthetic pathways in the use of glucose; (2) ATP production, although inefficient, glycolysis shows other advantages when compared to mitochondrial respiration and lactate release may therefore reflect that the glycolytic flux is higher than required to feed mitochondria with pyruvate and glycolytic NADH; (3) Oxygen supply becomes critical under hypermetabolic conditions, and the ATP/O ratio quantifies the efficiency of oxygen use to regenerate ATP, although aerobic metabolism remains intense the participation of anaerobic metabolisms (lactic fermentation or succinate generation) could greatly increase ATP/O ratio; (4) time and space constraints would explain that anaerobic metabolism is required while the general metabolism appears oxidative; and (5) active repression of respiration by glycolytic intermediates, which could ensure optimization of glucose and oxygen use.
View Article and Find Full Text PDFO. Warburg conducted one of the first studies on tumor energy metabolism. His early discoveries pointed out that cancer cells display a decreased respiration and an increased glycolysis proportional to the increase in their growth rate, suggesting that they mainly depend on fermentative metabolism for ATP generation.
View Article and Find Full Text PDFEvidence for the Crabtree effect was first reported by H. Crabtree in 1929 and is defined as the glucose-induced decrease of cellular respiratory flux. This effect was observed in tumor cells and was not detected in most non-tumor cells.
View Article and Find Full Text PDFThe Crabtree and Warburg effects are two well-known deviations of cell energy metabolism that will be described herein. A number of hypotheses have been formulated regarding the molecular mechanisms leading to these cellular energy metabolism deviations. In this review, we will focus on the emerging notion that metabolite-induced regulations participate in the induction of these effects.
View Article and Find Full Text PDF