This report describes the design, synthesis, and biochemical evaluation of alkene- and alkane-bridged AB(C)-ring mimics of the lantibiotic nisin. Nisin belongs to a class of natural antimicrobial peptides, and has a unique mode of action: its AB(C)-ring system binds to the pyrophosphate moiety of lipid II. This mode of action was the rationale for the design of smaller nisin-derived peptides to obtain novel potential antibiotics.
View Article and Find Full Text PDFThis paper describes two approaches for the synthesis of a crossed alkene-bridged mimic of the thioether ring system of the nisin Z DE-fragment. The first approach comprised the stepwise total synthesis featuring a cross metathesis and a macrolactamization on a solid support followed by a ring-closing metathesis in solution. Via this route the title compound was obtained in an overall yield of 7% (85% on average for 16 reaction steps).
View Article and Find Full Text PDF[reaction: see text] Ring-closing alkyne metathesis toward the synthesis of the alkyne-brigded A-, B-, C-, and (D)E-ring mimics of the peptide antibiotic nisin Z is described. We have successfully synthesized alkyne-bridged cyclic peptides containing 4-7 amino acid residues in yields ranging from 18 to 82%.
View Article and Find Full Text PDFAn alkene-bridged mimic of the complex DE-bisthioether-ring system of the antibiotic nisin was prepared in one step from the linear precursor.
View Article and Find Full Text PDF