The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points.
View Article and Find Full Text PDFThe role of the chorio-allantoic placenta as the critical nutrient- and oxygen-supplying organ to nourish the demands of the fetus has been well recognized. This function relies on the successful establishment of the placental feto-maternal exchange unit, or interhaemal barrier, across which all nutrients as well as waste products must pass to cross from the maternal to the fetal blood circulation, or vice versa, respectively. As a consequence, defects in the establishment of this elaborate interface lead to fetal growth retardation or even embryonic lethality, depending on the severity of the defect.
View Article and Find Full Text PDFAbdominal aortic aneurysm (AAA) represents a debilitating vascular disease characterized by aortic dilatation and wall rupture if it remains untreated. We aimed to determine the effects of Ang 1-7 in a murine model of AAA and to investigate the molecular mechanisms involved. Eight- to 10-week-old apolipoprotein E-deficient mice (ApoEKO) were infused with Ang II (1.
View Article and Find Full Text PDFThoracic aortic aneurysm (TAA) involves extracellular matrix (ECM) remodeling of the aortic wall, leading to reduced biomechanical support with risk of aortic dissection and rupture. Activation of the renin-angiotensin system, and resultant angiotensin (Ang) II synthesis, is critically involved in the onset and progression of TAA. The current study investigated the effects of angiotensin (Ang) 1-7 on a murine model of TAA.
View Article and Find Full Text PDFHistone citrullination is a relatively poorly studied epigenetic modification that involves the irreversible conversion of arginine residues into citrulline. It is conferred by a small family of enzymes known as protein arginine deiminases (PADIs). PADI function supports the pluripotent state of embryonic stem cells, but in other contexts, also promotes efficient cellular differentiation.
View Article and Find Full Text PDFDiabetic cardiomyopathy (DbCM) occurs independently of cardiovascular diseases or hypertension, leading to heart failure and increased risk for death in diabetic patients. To investigate the molecular mechanisms involved in DbCM, we performed a quantitative proteomic profiling analysis in the left ventricle (LV) of type 2 diabetic mice. Six-month-old C57BL/6J-lepr/lepr () mice exhibited DbCM associated with diastolic dysfunction and cardiac hypertrophy.
View Article and Find Full Text PDFCardiovascular disease is the most prevalent cause of morbidity and mortality in diabetes. Epicardial adipose tissue (EAT) lies in direct contact with the myocardium and coronary arteries and can influence cardiac (patho) physiology through paracrine signaling pathways. This study hypothesized that the proteins released from EAT represent a critical molecular link between the diabetic state and coronary artery endothelial cell dysfunction.
View Article and Find Full Text PDFDiscovered in the late 1980s as an extracellular vesicle of endosomal origin secreted from reticulocytes, exosomes recently gained scientific attention due to its role in intercellular communication. Exosomes have now been identified to carry cell-specific cargo of nucleic acids, proteins, lipids, and other biologically active molecules. Exosomes can be selectively taken up by neighboring or distant cells, which has shown to result in structural and functional responses in the recipient cells.
View Article and Find Full Text PDF