Aims/hypothesis: Homozygous mutations in RFX6 lead to neonatal diabetes accompanied by a hypoplastic pancreas, whereas heterozygous mutations cause MODY. Recent studies have also shown RFX6 variants to be linked with type 2 diabetes. Despite RFX6's known function in islet development, its specific role in diabetes pathogenesis remains unclear.
View Article and Find Full Text PDFThe pathogenesis of diabetes involves complex changes in the expression profiles of mRNA and non-coding RNAs within pancreatic islet cells. Recent progress in induced pluripotent stem cell (iPSC) technology have allowed the modeling of diabetes-associated genes. Our recent study using FOXA2-deficient human iPSC models has highlighted an essential role for FOXA2 in the development of human pancreas.
View Article and Find Full Text PDFRecent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations.
View Article and Find Full Text PDFRecently, we reported that forkhead box A2 (FOXA2) is required for the development of human pancreatic α- and β-cells. However, whether miRNAs play a role in regulating pancreatic genes during pancreatic development in the absence of FOXA2 expression is largely unknown. Here, we aimed to capture the dysregulated miRNAs and to identify their pancreatic-specific gene targets in pancreatic progenitors (PPs) derived from wild-type induced pluripotent stem cells (WT-iPSCs) and from iPSCs lacking FOXA2 (FOXA2iPSCs).
View Article and Find Full Text PDFCofactor flavin adenine dinucleotide (FAD), a compound with flavin moiety and a derivative of riboflavin (vitamin B), is shown to bind to Sox9 (a key transcription factor in early pancreatic development) and, subsequently, induce a large increase in markers of pancreatic development, including Ngn3 and PTF1a. Pyridoxal 5'-phosphate (PLP), the active form of vitamin B, also binds to Sox9 and results in a similar increase in pancreatic development markers. Sox9 is known to be specifically important for pancreatic progenitors.
View Article and Find Full Text PDF