The classification of motor imagery (MI) using Electroencephalography (EEG) plays a pivotal role in facilitating communication for individuals with physical limitations through Brain-Computer Interface (BCI) systems. Recent strides in Attention-Based Networks (ATN) have showcased remarkable performance in EEG signal classification, presenting a promising alternative to conventional Convolutional Neural Networks (CNNs). However, while CNNs have been extensively analyzed for their resilience against adversarial attacks, the susceptibility of ATNs in comparable scenarios remains largely unexplored.
View Article and Find Full Text PDF