Publications by authors named "Nour Eddine Fahmi"

The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven an elusive goal since its conception. Oligonucleotide frameworks provide an especially attractive route toward studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via X-ray crystallography as a proof-of-principle toward scaffolding larger guest species.

View Article and Find Full Text PDF

The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven elusive since its conception. Oligonucleotide frameworks provide an especially attractive route towards studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via x-ray crystallography, as a proof-of-principle towards scaffolding larger guest species.

View Article and Find Full Text PDF

The combination of multiple orthogonal interactions enables hierarchical complexity in self-assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host-guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 10 m , directs hierarchical assembly of origami monomers into 1D nanofibers.

View Article and Find Full Text PDF

The integration of proteins with DNA nanotechnology would enable materials with diverse applications in biology, medicine, and engineering. Here, we describe a method for the incorporation of bioactive fibronectin domain proteins with DNA nanostructures using two orthogonal coiled-coil peptides. One peptide from each coiled-coil pair is attached to a DNA origami cuboid in a multivalent fashion by attaching the peptides to DNA handles.

View Article and Find Full Text PDF

Controlling the nucleation step of a self-assembly system is essential for engineering structural complexity and dynamic behaviors. Here, we design a "frame-filling" model system that comprises one type of self-complementary DNA tile and a hosting DNA origami frame to investigate the inherent dynamics of three general nucleation modes in nucleated self-assembly: unseeded, facet, and seeded nucleation. Guided by kinetic simulation, which suggested an optimal temperature range to differentiate the individual nucleation modes, and complemented by single-molecule observations, the transition of tiles from a metastable, monomeric state to a stable, polymerized state through the three nucleation pathways was monitored by Mg-triggered kinetic measurements.

View Article and Find Full Text PDF

Genetically encoded fluorescent noncanonical amino acids (fNCAAs) could be used to develop novel fluorescent sensors of protein function. Previous efforts toward this goal have been limited by the lack of extensive physicochemical and structural characterizations of protein-based sensors containing fNCAAs. Here, we report the steady-state spectroscopic properties and first structural analyses of an fNCAA-containing Fab fragment of the 5c8 antibody, which binds human CD40L.

View Article and Find Full Text PDF

DNA polymerase β (Pol β) repairs cellular DNA damage. When such damage is inflicted upon the DNA in tumor cells treated with DNA targeted antitumor agents, Pol β thus diminishes their efficacy. Accordingly, this enzyme has long been a target for antitumor therapy.

View Article and Find Full Text PDF

DNA and peptides are two of the most commonly used biomolecules for building self-assembling materials, but few examples exist of hybrid nanostructures that contain both components. Here we report the modification of two peptides that comprise a coiled-coil heterodimer pair with unique DNA handles in order to link DNA origami nanostructures bearing complementary strands into micrometer-long one-dimensional arrays. We probed the effect of number of coils on self-assembly and demonstrated the formation of  structures through multiple routes: one-pot assembly, formation of dimers and trimers and an alternating copolymer of two different origami structures, and stepwise assembly of purified structures with coiled-coil conjugates.

View Article and Find Full Text PDF

A reconfigurable DNA nano-tweezer is reported that can be switched between a closed and open state with a brief pulse of UV light. In its initial state, the tweezer is held shut using a hairpin with a single-stranded poly-A loop. Also incorporated in the structure is a poly-T trigger strand bearing seven photocaged residues.

View Article and Find Full Text PDF

Recent advances in polymerase engineering have made it possible to copy information back and forth between DNA and artificial genetic polymers composed of TNA (α-L-threofuranosyl-(3',2') nucleic acid). This property, coupled with enhanced nuclease stability relative to natural DNA and RNA, warrants further investigation into the structural and functional properties of TNA as an artificial genetic polymer for synthetic biology. Here, we report a highly optimized chemical synthesis protocol for constructing multigram quantities of TNA nucleosides that can be readily converted to nucleoside 2'-phosphoramidites or 3'-triphosphates for solid-phase and polymerase-mediated synthesis, respectively.

View Article and Find Full Text PDF

Threose nucleic acid (TNA) is an unnatural genetic polymer capable of undergoing Darwinian evolution to generate folded molecules with ligand-binding activity. This property, coupled with a nuclease-resistant backbone, makes TNA an attractive candidate for future applications in biotechnology. Previously, we have shown that an engineered form of the Archaean replicative DNA polymerase 9°N, known commercially as Therminator DNA polymerase, can copy a three-letter genetic alphabet (A,T,C) from DNA into TNA.

View Article and Find Full Text PDF

CD4-gp120 interaction is the first step for HIV-1 entry into host cells. A highly conserved pocket in gp120 protein is an attractive target for developing gp120 inhibitors or novel HIV detection tools. Here we incorporate seven phenylalanine derivatives having different sizes and steric conformations into position 43 of domain 1 of CD4 (mD1.

View Article and Find Full Text PDF

In a recent study, we demonstrated that structurally compact fluorophores incorporated into the side chains of amino acids could be introduced into dihydrofolate reductase from Escherichia coli (ecDHFR) with minimal disruption of protein structure or function, even when the site of incorporation was within a folded region of the protein. The modified proteins could be employed for FRET measurements, providing sensitive monitors of changes in protein conformation. The very favorable results achieved in that study encouraged us to prepare additional fluorescent amino acids of potential utility for studying protein dynamics.

View Article and Find Full Text PDF

Two fluorescent amino acids, including the novel fluorescent species 4-biphenyl-l-phenylalanine (1), have been incorporated at positions 17 and 115 of dihydrofolate reductase (DHFR) to enable a study of conformational changes associated with inhibitor binding. Unlike most studies involving fluorescently labeled proteins, the fluorophores were incorporated into the amino acid side chains, and both probes [1 and L-(7-hydroxycoumarin-4-yl)ethylglycine (2)] were smaller than fluorophores typically used for such studies. The DHFR positions were chosen as potentially useful for Förster resonance energy transfer (FRET) measurements on the basis of their estimated separation (17-18 Å) and the expected change in distance along the reaction coordinate.

View Article and Find Full Text PDF

Because of the lack of sensitivity to small changes in distance by available FRET pairs (a constraint imposed by the dimensions of the enzyme), a DHFR containing two pyrene moieties was prepared to enable the observation of excimer formation. Pyren-1-ylalanine was introduced into DHFR positions 16 and 49 using an in vitro expression system in the presence of pyren-1-ylalanyl-tRNA(CUA). Excimer formation (λ(ex) 342 nm; λ(em) 481 nm) was observed in the modified DHFR, which retained its catalytic competence and was studied under multiple and single turnover conditions.

View Article and Find Full Text PDF

N,S-diprotected L-thiothreonine and L-allo-thiothreonine derivatives were synthesized using a novel chemical strategy, and used for esterification of the dinucleotide pdCpA. The aminoacylated dinucleotides were then employed for the preparation of activated suppressor tRNA(CUA) transcripts. Thiothreonine and allo-thiothreonine were incorporated into a predetermined position of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine, and the elaborated proteins were derivatized site-specifically at the thiothreonine residue with a fluorophore.

View Article and Find Full Text PDF

Ribosomally mediated protein biosynthesis is limited to α-L-amino acids. A strong bias against β-L-amino acids precludes their incorporation into proteins in vivo and also in vitro in the presence of misacylated β-aminoacyl-tRNAs. Nonetheless, earlier studies provide some evidence that analogues of aminoacyl-tRNAs bearing β-amino acids can be accommodated in the ribosomal A-site.

View Article and Find Full Text PDF

Many pathogens utilize the formation of transmembrane pores in target cells in the process of infection. A great number of pore-forming proteins, both bacterial and viral, are considered to be important virulence factors, which makes them attractive targets for the discovery of new therapeutic agents. Our research is based on the idea that compounds designed to block the pores can inhibit the action of virulence factors, and that the chances to find high affinity blocking agents increase if they have the same symmetry as the target pore.

View Article and Find Full Text PDF

Glycosylation of proteins can have a dramatic effect on their physical, chemical, and biological properties. Analogues of dihydrofolate reductase and firefly luciferase containing glycosylated amino acids at single, predetermined sites have been elaborated. Misacylated suppressor tRNAs activated with glycosylated serine and tyrosine derivatives were used for suppression of the nonsense codons in a cell-free protein biosynthesizing system, thereby permitting the preparation of the desired glycosylated proteins.

View Article and Find Full Text PDF

While numerous biologically active peptides contain D-amino acids, the elaboration of such species is not carried out by ribosomal synthesis. In fact, the bacterial ribosome discriminates strongly against the incorporation of D-amino acids from D-aminoacyl-tRNAs. To permit the incorporation of D-amino acids into proteins using in vitro protein-synthesizing systems, a strategy has been developed to prepare modified ribosomes containing alterations within the peptidyltransferase center and helix 89 of 23S rRNA.

View Article and Find Full Text PDF

Recently, using structure-inspired drug design, we demonstrated that aminoalkyl derivatives of beta-cyclodextrin inhibited anthrax lethal toxin action by blocking the transmembrane pore formed by the protective antigen (PA) subunit of the toxin. In the present study, we evaluate a series of new beta-cyclodextrin derivatives with the goal of identifying potent inhibitors of anthrax toxins. Newly synthesized hepta-6-thioaminoalkyl and hepta-6-thioguanidinoalkyl derivatives of beta-cyclodextrin with alkyl spacers of various lengths were tested for the ability to inhibit cytotoxicity of lethal toxin in cells as well as to block ion conductance through PA channels reconstituted in planar bilayer lipid membranes.

View Article and Find Full Text PDF

Recently, we demonstrated that simultaneous blocking of bacterial growth by antibiotics and inhibition of anthrax toxin action with antibodies against protective antigen were beneficial for the treatment of anthrax. The present study examined the hypothesis that blocking the pore formed by protective antigen can inhibit the action of anthrax toxin. The potential inhibitors were chosen by a structure-based design using beta-cyclodextrin as the starting molecule.

View Article and Find Full Text PDF

By overexpression of modified Escherichia coli 23S rRNAs from multicopy plasmids, ribosomes were prepared that contained mutations in two regions (2447-2450 and 2457-2462) of 23S rRNA. Following mutagenesis and selection, two clones with mutations in the 2447-2450 region (peptidyltransferase center) and six with mutations in the 2457-2462 region (helix 89) were characterized. The mutations were shown to exhibit a high level of homology.

View Article and Find Full Text PDF

Metabolic inactivation of the antitumor antibiotic bleomycin is believed to be mediated exclusively via the action of bleomycin hydrolase, a cysteine proteinase that is widely distributed in nature. While the spectrum of antitumor activity exhibited by the bleomycins is believed to reflect the anatomical distribution of bleomycin hydrolase within the host, little has been done to characterize the product of the putative inactivation at a chemical or biochemical level. The present report describes the synthesis of deamidobleomycin demethyl A(2) (3) and deamido bleomycin A(2) (4), as well as the respective aglycones.

View Article and Find Full Text PDF