Publications by authors named "Nothdurft K"

Polymer microgels are swollen macromolecular networks with a typical size of hundred of nanometers to several microns that show an extraordinary open and responsive architecture to different external stimuli, being therefore important candidates for nanobiotechnology and nanomedical applications such as biocatalysis, sensing and drug delivery. It is therefore crucial to understand the delicate balance of physical-chemical interactions between the polymer backbone and solvent molecules that to a high extent determine their responsivity. In particular, the co-nonsolvency effect of poly(N-isopropylacrylamide) in aqueous alcohols is highly discussed, and there is a disagreement between molecular dynamics (MD) simulations (from literature) of the preferential adsorption of alcohol on the polymer chains and the values obtained by several empirical methods that mostly probe the bulk solvent properties.

View Article and Find Full Text PDF

Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent.

View Article and Find Full Text PDF

Many applications of responsive microgels rely on the fast adaptation of the polymer network. However, the underlying dynamics of the de-/swelling process of the gels have not been fully understood. In the present work, we focus on the collapse kinetics of poly--isopropylacrylamide (pNIPAM) microgels due to cononsolvency.

View Article and Find Full Text PDF

Crosslinked poly-N-isopropylacrylamide (pNIPAM) gels adapt to their environment by a unique transition from a flexible, swollen macromolecular network to a collapsed particle. pNIPAM gels are swollen in both, pure water and pure methanol (MeOH). However, a drastic volume loss is observed in mixtures of water and methanol over a wide composition range.

View Article and Find Full Text PDF

Natural extracellular matrices often have a filamentous nature, however, only a limited number of artificial extracellular matrices have been designed from nanofibrillar building blocks. Here we report the preparation of temperature-responsive nanofibrillar hydrogels from rod-shaped cellulose nanocrystals (CNCs) functionalized with a copolymer of N-isopropylacrylamide and N,N'-dimethylaminoethyl methacrylate. The composition of the copolymer was tuned to achieve gelation of the suspension of copolymer-functionalized CNCs at 37 °C in cell culture medium and gel dissociation upon cooling it to room temperature.

View Article and Find Full Text PDF

Unique doubly temperature-responsive hollow microgels are presented. These consist of two concentric thermoresponsive polymer shells made of poly(N-isopropylacrylamide) (PNIPAM) and poly(N-isopropylmethacrylamide) (PNIPMAM), respectively. The hollow particles are derived from silica-PNIPAM-PNIPMAM core-shell-shell (CSS) particles by dissolution of the silica core.

View Article and Find Full Text PDF