Active fluids are driven out of thermodynamic equilibrium by internally generated forces, causing complex patterns of motion. Even when both the forces and motion are measurable, it is not yet possible to relate the two, because the sources of energy injection and dissipation are often unclear. Here, we study how energy is transferred by developing a method to measure viscosity from the shear stresses and strain rates within an epithelial cell monolayer.
View Article and Find Full Text PDFIn confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed both tail-to-head and head-to-tail defect motion occurring at the same time in the same cell monolayer.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2024
Since genome sequencing became accessible, determining how specific differences in genotypes lead to complex phenotypes such as disease has become one of the key goals in biomedicine. Predicting effects of sequence variants on cellular or organismal phenotype faces several challenges. First, variants simultaneously affect multiple protein properties and predicting their combined effect is complex.
View Article and Find Full Text PDFThe respective roles of aligned collagen fiber morphology found in the extracellular matrix (ECM) of pancreatic cancer patients and cellular migration dynamics have been gaining attention because of their connection with increased aggressive phenotypes and poor prognosis. To better understand how collagen fiber morphology influences cell-matrix interactions associated with metastasis, we used Second Harmonic Generation (SHG) images from patient biopsies with Pancreatic ductal adenocarcinoma (PDAC) as models to fabricate collagen scaffolds to investigate processes associated with motility. Using the PDAC BxPC-3 metastatic cell line, we investigated single and collective cell dynamics on scaffolds of varying collagen alignment.
View Article and Find Full Text PDFSlowing peritoneal spread in high-grade serous ovarian cancer (HGSOC) would improve patient prognosis and quality of life. HGSOC spreads when single cells and spheroids detach, float through the peritoneal fluid and take over new sites, with spheroids thought to be more aggressive than single cells. Using our in vitro model of spheroid collective detachment, we determine that increased substrate stiffness led to the detachment of more spheroids.
View Article and Find Full Text PDFA critical phase of wound healing is the coordinated movement of keratinocytes. To this end, bioglasses show promise in speeding healing in hard tissues and skin wounds. Studies suggest that bioglass materials may promote wound healing by inducing positive cell responses in proliferation, growth factor production, expression of angiogenic factors, and migration.
View Article and Find Full Text PDFIntroduction: In native heart tissue, functions of cardiac fibroblasts (CFs) include synthesis, remodeling, and degradation of the extracellular matrix (ECM) as well as secreting factors that regulate cardiomyocyte (CM) function. The influence of direct co-culture and CF-derived ECM on CM mechanical function are not fully understood.
Methods: Here we use an engineered culture platform that provides control over ECM geometry and substrate stiffness to evaluate the influence of iPSC-CFs, and the ECM they produce, on the mechanical function of iPSC-CMs.
Cells respond to the stiffness of their surrounding environment, but quantifying the stiffness of a fibrous matrix at the scale of a cell is complicated, due to the effects of nonlinearity and complex force transmission pathways resulting from randomness in fiber density and connections. While it is known that forces produced by individual contractile cells can stiffen the matrix, it remains unclear how simultaneous contraction of multiple cells in a fibrous matrix alters the stiffness at the scale of a cell. Here, we used computational modeling and experiments to quantify the stiffness of a random fibrous matrix embedded with multiple contracting inclusions, which mimicked the contractile forces of a cell.
View Article and Find Full Text PDFLysosomes are catabolic organelles involved in macromolecular digestion, and their dysfunction is associated with pathologies ranging from lysosomal storage disorders to common neurodegenerative diseases, many of which have lipid accumulation phenotypes. The mechanism of lipid efflux from lysosomes is well understood for cholesterol, while the export of other lipids, particularly sphingosine, is less well studied. To overcome this knowledge gap, we have developed functionalized sphingosine and cholesterol probes that allow us to follow their metabolism, protein interactions, and their subcellular localization.
View Article and Find Full Text PDFVimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2022
As fibrous collagen is the most abundant protein in mammalian tissues, gels of collagen fibers have been extensively used as an extracellular matrix scaffold to study how cells sense and respond to cues from their microenvironment. Other components of native tissues, such as glycosaminoglycans like hyaluronic acid, can affect cell behavior in part by changing the mechanical properties of the collagen gel. Prior studies have quantified the effects of hyaluronic acid on the mechanical properties of collagen gels in experiments of uniform shear or compression at the macroscale.
View Article and Find Full Text PDFCatecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by an arrhythmogenic mechanism involving disruption of calcium handling. This genetic disease can lead to sudden death in children and young adults during physical or emotional stress. Prior CPVT studies have focused on calcium handling, but mechanical functionality has rarely been investigated .
View Article and Find Full Text PDFDuring tissue development and repair, cells contract and expand in coordination with their neighbors, giving rise to tissue deformations that occur on length scales far larger than that of a single cell. The biophysical mechanisms by which the contractile forces of each cell cause deformations on multicellular length scales are not fully clear. To investigate this question, we began with the principle of force equilibrium, which dictates a balance of tensile forces between neighboring cells.
View Article and Find Full Text PDFIn collective cell migration, the motion results from forces produced by each cell and transmitted to the neighboring cells and to the substrate. Because inertia is negligible and the migration occurs over long time scales, the cell layer exhibits viscous behavior, where force and motion are connected by an apparent friction that results from the breaking and forming of adhesive bonds at the cell-cell and cell-substrate interfaces. Most theoretical models for collective migration include an apparent friction to connect force and motion, with many models making predictions that depend on the ratio of cell-cell and cell-substrate friction.
View Article and Find Full Text PDFWe investigated an model for mesothelial clearance, wherein ovarian cancer cells invade into a layer of mesothelial cells, resulting in mesothelial retraction combined with cancer cell disaggregation and spreading. Prior to the addition of tumor cells, the mesothelial cells had an elongated morphology, causing them to align with their neighbors into well-ordered domains. Flaws in this alignment, which occur at topological defects, have been associated with altered cell density, motion, and forces.
View Article and Find Full Text PDFCells sense mechanical signals within the extracellular matrix, the most familiar being stiffness, but matrix stiffness cannot be simply described by a single value. Randomness in matrix structure causes stiffness at the scale of a cell to vary by more than an order of magnitude. Additionally, the extracellular matrix contains ducts, blood vessels, and, in cancer or fibrosis, regions with abnormally high stiffness.
View Article and Find Full Text PDFIt is well established that collagen alignment in the breast tumor microenvironment provides biophysical cues to drive disease progression. Numerous mechanistic studies have demonstrated that tumor cell behavior is driven by the architecture and stiffness of the collagen matrix. However, the mechanical properties within a 3D collagen microenvironment, particularly at the scale of the cell, remain poorly defined.
View Article and Find Full Text PDFThrough mechanical forces, biological cells remodel the surrounding collagen network, generating striking deformation patterns. Tethers-tracts of high densification and fibre alignment-form between cells, thinner bands emanate from cell clusters. While tethers facilitate cell migration and communication, how they form is unclear.
View Article and Find Full Text PDFCells move in collective groups in biological processes such as wound healing, morphogenesis, and cancer metastasis. How active cell forces produce the motion in collective cell migration is still unclear. Many theoretical models have been introduced to elucidate the relationship between the cell's active forces and different observations about the collective motion such as collective swirls, oscillations, and rearrangements.
View Article and Find Full Text PDFThroughout the body, epithelial tissues contain curved features (e.g. cysts, ducts and crypts) that influence cell behaviors.
View Article and Find Full Text PDFThe extracellular matrix provides macroscale structural support to tissues as well as microscale mechanical cues, like stiffness, to the resident cells. As those cues modulate gene expression, proliferation, differentiation, and motility, quantifying the stiffness that cells sense is crucial to understanding cell behavior. Whereas the macroscopic modulus of a collagen network can be measured in uniform extension or shear, quantifying the local stiffness sensed by a cell remains a challenge due to the inhomogeneous and nonlinear nature of the fiber network at the scale of the cell.
View Article and Find Full Text PDFWell-controlled 2D cell culture systems advance basic investigations in cell biology and provide innovative platforms for drug development, toxicity testing, and diagnostic assays. These cell culture systems have become more advanced in order to provide and to quantify the appropriate biomechanical and biochemical cues that mimic the milieu of conditions present . Here we present an innovative 2D cell culture system to investigate human stem cell-derived cardiomyocytes, the muscle cells of the heart responsible for pumping blood throughout the body.
View Article and Find Full Text PDFCell contractile forces deform and reorganize the surrounding matrix, but the relationship between the forces and the resulting displacements is complicated by the fact that the fibrous structure brings about a complex set of mechanical properties. Many studies have quantified nonlinear and time-dependent properties at macroscopic scales, but it is unclear whether macroscopic properties apply to the scale of a cell, where the matrix is composed of a heterogeneous network of fibers. To address this question, we mimicked the contraction of a cell embedded within a fibrous collagen matrix and quantified the resulting displacements.
View Article and Find Full Text PDFCell migration is essential for regulating many biological processes in physiological or pathological conditions, including embryonic development and cancer invasion. In vitro and in silico studies suggest that collective cell migration is associated with some biomechanical particularities such as restructuring of extracellular matrix (ECM), stress and force distribution profiles, and reorganization of the cytoskeleton. Therefore, the phenomenon could be understood by an in-depth study of cells' behavior determinants, including but not limited to mechanical cues from the environment and from fellow "travelers".
View Article and Find Full Text PDF