Optimized surface-type impedimetric and capacitive proximity sensors have been fabricated on paper substrates by using rubbing-in technology. The orange dye (OD) and silicone glue (SG) composite-gel films were deposited on the zig-zag gap between two aluminum electrodes fixed on a paper (dielectric) substrate. The effect of proximity of various objects (receivers) on the impedance and the capacitance of the sensors was investigated.
View Article and Find Full Text PDFThis work examines the physics of a non-invasive multi-functional elastic thin-film graphite flake-isoprene sulfone composite sensor. The strain design and electrical characterization of the stretching force, acceleration, and temperature were performed. The rub-in technique was used to fabricate graphite flakes and isoprene sulfone into sensors, which were then analyzed for their morphology using methods such as SEM, AFM, X-ray diffraction, and Fourier transform infrared spectroscopy to examine the device's surface and structure.
View Article and Find Full Text PDFPolymeric rubber and organic semiconductor HPc-CNT-composite-based surface- and sandwich-type shockproof deformable infrared radiation (IR) sensors were fabricated using a rubbing-in technique. CNT and CNT-HPc (30:70 wt.%) composite layers were deposited on a polymeric rubber substrate as electrodes and active layers, respectively.
View Article and Find Full Text PDFThe silicon heterojunction solar cell (SHJ) is considered the dominant state-of-the-art silicon solar cell technology due to its excellent passivation quality and high efficiency. However, SHJ's light management performance is limited by its narrow optical absorption in long-wave near-infrared (NIR) due to the front, and back tin-doped indium oxide (ITO) layer's free carrier absorption and reflection losses. Despite the light-trapping efficiency (LTE) schemes adopted by SHJ in terms of back surface texturing, the previous investigations highlighted the ITO layer as a reason for an essential long-wavelength light loss mechanism in SHJ solar cells.
View Article and Find Full Text PDFThe unprecedented development of perovskite-silicon (PSC-Si) tandem solar cells in the last five years has been hindered by several challenges towards industrialization, which require further research. The combination of the low cost of perovskite and legacy silicon solar cells serve as primary drivers for PSC-Si tandem solar cell improvement. For the perovskite top-cell, the utmost concern reported in the literature is perovskite instability.
View Article and Find Full Text PDFChalcogenide, tin selenide-based thermoelectric (TE) materials are Earth-abundant, non-toxic, and are proven to be highly stable intrinsically with ultralow thermal conductivity. This work presented an updated review regarding the extraordinary performance of tin selenide in TE applications, focusing on the crystal structures and their commonly used fabrication methods. Besides, various optimization strategies were recorded to improve the performance of tin selenide as a mid-temperature TE material.
View Article and Find Full Text PDFThe present situation of COVID-19 diverted our focus towards utilizing the degraded solar cells for sensor application, this will help in global energy harvesting. So, here is our successful effort to reuse already degraded solar cells as ultraviolet (UV) and infrared (IR) sensor. The spin-coated perovskite (CHNHPbICl) has been already tested for visible light spectrum, as an extension to that now it is utilized as UV and IR intensity sensors to cover the whole spectrum.
View Article and Find Full Text PDFIn this research, due to the present pandemic of COVID-19, we are proposing a stable and fixed semitransparent photo-thermoelectric cell (PTEC) module for green energy harvesting. This module is based on the alloy of Bismuth Telluride Selenide (BiTeSe), designed in a press tablet form and characterized under solar energy. Here, both aspects of solar energy i.
View Article and Find Full Text PDFThis research work demonstrates compositional engineering of an organic-inorganic hybrid nano-composites for modifying absolute threshold of humidity sensors. Vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO), an organic semiconductor, doped with Titanium-dioxide nanoparticles (TiO NPs) has been employed to fabricate humidity sensors. The morphology of the VOPcPhO:TiO nano-composite films has been analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM).
View Article and Find Full Text PDF