This Letter reports a search for charge-parity (CP) symmetry violating nonstandard interactions (NSI) of neutrinos with matter using the NOvA Experiment, and examines their effects on the determination of the standard oscillation parameters. Data from ν_{μ}(ν[over ¯]_{μ})→ν_{μ}(ν[over ¯]_{μ}) and ν_{μ}(ν[over ¯]_{μ})→ν_{e}(ν[over ¯]_{e}) oscillation channels are used to measure the effect of the NSI parameters ϵ_{eμ} and ϵ_{eτ}. With 90% CL the magnitudes of the NSI couplings are constrained to be |ϵ_{eμ}|≲0.
View Article and Find Full Text PDFEur Phys J C Part Fields
September 2023
The inclusive electron neutrino charged-current cross section is measured in the NOvA near detector using 8.02×10^{20} protons-on-target in the NuMI beam. The sample of GeV electron neutrino interactions is the largest analyzed to date and is limited by ≃17% systematic rather than the ≃7.
View Article and Find Full Text PDFSpeaker recognition is an important classification task, which can be solved using several approaches. Although building a speaker recognition model on a closed set of speakers under neutral speaking conditions is a well-researched task and there are solutions that provide excellent performance, the classification accuracy of developed models significantly decreases when applying them to emotional speech or in the presence of interference. Furthermore, deep models may require a large number of parameters, so constrained solutions are desirable in order to implement them on edge devices in the Internet of Things systems for real-time detection.
View Article and Find Full Text PDFThis Letter reports results from the first long-baseline search for sterile antineutrinos mixing in an accelerator-based antineutrino-dominated beam. The rate of neutral-current interactions in the two NOvA detectors, at distances of 1 and 810 km from the beam source, is analyzed using an exposure of 12.51×10^{20} protons-on-target from the NuMI beam at Fermilab running in antineutrino mode.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2020
Aerobic exercise capacity is critical to bodily health. As a model to investigate the mechanisms that determine health and disease, we employed low (LCR) and high (HCR) capacity running rat models selectively bred to concentrate the genes responsible for divergent aerobic running capacity. To investigate the skeletal muscle contribution to this innate difference in running capacity we employed an approach combining examination of the myofilament protein composition and contractile properties of the fast fiber extensor digitorum longus (EDL) and slow fiber soleus (SOL) muscles from LCR and HCR rats.
View Article and Find Full Text PDFBackground: There are no known interventions addressing self-esteem in women following spinal cord injury (SCI).
Objectives: To test the feasibility of an online self-esteem intervention for women with disabilities, as modified for women with SCI.
Method: We conducted a randomized, controlled feasibility test of a self-esteem intervention (N = 21).
The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{μ} beam at a distance of 810 km. Using 12.
View Article and Find Full Text PDFPilot test GoWoman, a small-group weight management intervention for mobility impaired women that was a disability- and gender-responsive adaptation of the Diabetes Prevention Program delivered in the online virtual world of Second Life. Objectives were to (1) examine pre-/post-intervention differences in weight, waist circumference, diet, physical activity, self-efficacy for diet and physical activity, nutrition knowledge and social support for weight management, (2) determine intervention feasibility (fidelity, attrition, engagement, acceptability). Single-group modified interrupted time series quasi-experimental design whereby participants served as their own controls.
View Article and Find Full Text PDFThis Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of 6.05×10^{20} protons on target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the muon-tau symmetry hypothesis that requires maximal θ_{23} mixing (θ_{23}=π/4).
View Article and Find Full Text PDFThe repeated intense stimulation of skeletal muscle rapidly decreases its force- and motion-generating capacity. This type of fatigue can be temporally correlated with the accumulation of metabolic by-products, including phosphate (Pi) and protons (H). Experiments on skinned single muscle fibers demonstrate that elevated concentrations of these ions can reduce maximal isometric force, unloaded shortening velocity, and peak power, providing strong evidence for a causative role in the fatigue process.
View Article and Find Full Text PDFPurpose: To examine the feasibility of an online self-esteem enhancement group program for women with disabilities.
Method: A sample of 19 racially and ethnically diverse, community-living women with physical disabilities, 22 to 61 years old, participated in a 7-session interactive group intervention (extending Hughes et al., 2004) in the 3-D, immersive, virtual environment of SecondLife.
Introduction: The aim of this study was to find out the impact of degradation and regeneration of force over time at NiTi springs on the value and course of the final acting force and to verify the possibility of using these phenomena for a directed transition to the reverse plateau and its maintaining.
Methods: Static and cyclic mechanical loadings were performed. At first unused springs were tested.
Recent Pat Biotechnol
December 2012
Hyperthermia is an important approach for the treatment of several diseases. Hyperthermia is also thought to induce hypertrophy of skeletal muscles in vitro and in vivo, and has been used as a therapeutic tool for millennia. In the first part of our work, we revise several relevant patents related to the utilization of hyperthermia for the treatment and diagnostic of human diseases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2012
The ability of skeletal muscle to enhance lipid utilization during exercise is a form of metabolic plasticity essential for survival. Conversely, metabolic inflexibility in muscle can cause organ dysfunction and disease. Although the transcription factor Kruppel-like factor 15 (KLF15) is an important regulator of glucose and amino acid metabolism, its endogenous role in lipid homeostasis and muscle physiology is unknown.
View Article and Find Full Text PDFWe designed and evaluated an innovative computer-aided-learning environment based on the on-line integration of computer controlled medical diagnostic devices and a medical information system for use in the preclinical medical physics education of medical students. Our learning system simulates the actual clinical environment in a hospital or primary care unit. It uses a commercial medical information system for on-line storage and processing of clinical type data acquired during physics laboratory classes.
View Article and Find Full Text PDFMuscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones.
View Article and Find Full Text PDFWe have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects.
View Article and Find Full Text PDFDiabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured.
View Article and Find Full Text PDFThe intracellular Ca(2+) concentration ([Ca(2+)](i)) in skeletal muscles must be rapidly regulated during the excitation-contraction-relaxation process. However, the signalling components involved in such rapid Ca(2+) movement are not fully understood. Here we report that mice deficient in the newly identified PtdInsP (phosphatidylinositol phosphate) phosphatase MIP/MTMR14 (muscle-specific inositol phosphatase) show muscle weakness and fatigue.
View Article and Find Full Text PDFStud Health Technol Inform
May 2007
We are creating an interactive, simulated "Cancer Genetics Tower" for the self-paced learning of Clinical Cancer Genetics by medical students (go to: http://casemed.case.edu/cancergenetics).
View Article and Find Full Text PDFThe conserved central and COOH-terminal regions of troponin T (TnT) interact with troponin C, troponin I, and tropomyosin to regulate striated muscle contraction. Phylogenic data show that the NH2-terminal region has evolved as an addition to the conserved core structure of TnT. This NH2-terminal region does not bind other thin filament proteins, and its sequence is hypervariable between fiber type and developmental isoforms.
View Article and Find Full Text PDFReduced homeostatic capacity for intracellular Ca2+ ([Ca2+]i) movement may underlie the progression of sarcopenia and contractile dysfunction during muscle aging. We report two alterations to Ca2+ homeostasis in skeletal muscle that are associated with aging. Ca2+ sparks, which are the elemental units of Ca2+ release from sarcoplasmic reticulum, are silent under resting conditions in young muscle, yet activate in a dynamic manner upon deformation of membrane structures.
View Article and Find Full Text PDFStriated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force.
View Article and Find Full Text PDF