Glycine encephalopathy (GCE) or nonketotic hyperglycinemia is an inborn error of glycine metabolism, inherited in an autosomal recessive manner due to a defect in any one of the four enzymes aminomethyltransferase (AMT), glycine decarboxylase (GLDC), glycine cleavage system protein-H (GCSH) and dehydrolipoamide dehydrogenase in the glycine cleavage system. This defect leads to glycine accumulation in body tissues, including the brain, and causes various neurological symptoms such as encephalopathy, hypotonia, apnea, intractable seizures and possible death. We screened 14 patients from 13 families with clinical and biochemical features suggestive of GCE for mutation in AMT, GLDC and GCSH genes by direct sequencing and genomic rearrangement of GLDC gene using a multiplex ligation-dependant probe amplification.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
August 2014
Maple syrup urine disease (MSUD) is a rare autosomal recessive metabolic disorder of branched-chain amino acid metabolism caused by the defective function of branched-chain α-ketoacid dehydrogenase complex (BCKDH). It is characterised by increased plasma leucine, isoleucine, and valine levels, and mutations can be detected in any one of the BCKDHA, BCKDHB, and DBT genes. In this study, we describe the molecular basis of a novel mutation found in one MSUD Malay patient from consanguineous parents.
View Article and Find Full Text PDFMitochondrial Subunit ND1 (mtND1) gene is involved in the first step of the electron transport chain of oxidative phosphorylation (OXPHOS). Alteration of the electron transport components by mutations in mtDNA may compromise the normal electron flow. This could lead to an increase of bifurcation and generation of superoxidase radicals and increase oxidative stress in various types of cancer cells.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) are a group of inherited disorders caused by the deficiency of specific lysosomal enzymes involved in glycosaminoglycans (GAGs) degradation. Currently, there are 11 enzyme deficiencies resulting in seven distinct MPS clinical syndromes and their subtypes. Different MPS syndromes cannot be clearly distinguished clinically due to overlapping signs and symptoms.
View Article and Find Full Text PDF