Rooted in dynamic systems theory, convergent cross mapping (CCM) has attracted increased attention recently due to its capability in detecting linear and nonlinear causal coupling in both random and deterministic settings. One limitation with CCM is that it uses both past and future values to predict the current value, which is inconsistent with the widely accepted definition of causality, where it is assumed that the future values of one process cannot influence the past of another. To overcome this obstacle, in our previous research, we introduced the concept of causalized convergent cross mapping (cCCM), where future values are no longer used to predict the current value.
View Article and Find Full Text PDFConvergent cross-mapping (CCM) has attracted increased attention recently due to its capability to detect causality in nonseparable systems under deterministic settings, which may not be covered by the traditional Granger causality. From an information-theoretic perspective, causality is often characterized as the directed information (DI) flowing from one side to the other. As information is essentially nondeterministic, a natural question is: does CCM measure DI flow? Here, we first causalize CCM so that it aligns with the presumption in causality analysis-the future values of one process cannot influence the past of the other, and then establish and validate the approximate equivalence of causalized CCM (cCCM) and DI under Gaussian variables through both theoretical derivations and fMRI-based brain network causality analysis.
View Article and Find Full Text PDFFunctional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia among older adults. Mild cognitive impairment (MCI) is considered a transitional phase between healthy cognitive aging and dementia. Progressive brain volume reduction/atrophy, particularly of the hippocampus, is associated with the transition from normal to MCI, and then to AD.
View Article and Find Full Text PDFSubject motion is a well-known confound in resting-state functional MRI (rs-fMRI) and the analysis of functional connectivity. Consequently, several clean-up strategies have been established to minimize the impact of subject motion. Physiological signals in response to cardiac activity and respiration are also known to alter the apparent rs-fMRI connectivity.
View Article and Find Full Text PDFOptimal conditions for resting-state functional magnetic resonance imaging (rs-fMRI) are still highly debated. Here, we comprehensively assessed the effects of various rest conditions on all cortical resting-state networks (RSNs) defined by an established atlas. Twenty-two healthy college students (22 ± 4 years old, 12 females) were scanned on a GE 3T MRI scanner.
View Article and Find Full Text PDFMounting evidence suggests that amyloid-β (Aβ) and vascular etiologies are intertwined in the pathogenesis of Alzheimer's disease (AD). Blood-oxygen-level-dependent (BOLD) signals, measured by resting-state functional MRI (rs-fMRI), are associated with neuronal activity and cerebrovascular hemodynamics. Nevertheless, it is unclear if BOLD fluctuations are associated with Aβ deposition in individuals at high risk of AD.
View Article and Find Full Text PDFFront Hum Neurosci
November 2018
Spontaneous fluctuations of resting-state functional connectivity have been studied in many ways, but grasping the complexity of brain activity has been difficult. Dimensional complexity measures, which are based on Eigenvalue (EV) spectrum analyses (e.g.
View Article and Find Full Text PDFMeasurements of human sound discrimination and localization are important for basic empirical and clinical applications. After a short survey of other methods such as evoked potentials, the development of a new device to measure human sound localization is described and its use illustrated with some examples. Built from a polyacrylic hemisphere or--in a later version--from an orbicular aluminum frame, the apparatus uses multiple speakers to emit auditory stimuli.
View Article and Find Full Text PDF