Circadian rhythms organize behavior and physiological processes to be appropriate to the predictable cycle of daily events. These rhythms are entrained by stimuli that provide time of day cues (zeitgebers), such as light, which regulates the sleep-wake cycle and associated rhythms. But other events, including meals, social cues, and bouts of locomotor activity, can act as zeitgebers.
View Article and Find Full Text PDFThe hypothalamic-pituitary-adrenal (HPA) axis self-regulates through a glucocorticoid negative feedback mechanism that is stereotypically slow and long lasting. Rapid (seconds to minutes) glucocorticoid feedback, however, inhibits stress-induced adrenocorticotropic hormone (ACTH) secretion too quickly to result from classic transcriptional effects of the occupied glucocorticoid receptor. Cannabinoids may act as rapid intermediary messengers between glucocorticoids and HPA activation via retroactive inhibition of afferent glutamate stimulation of the corticotropin-releasing factor neurons in the paraventricular nucleus.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2009
Corticosterone and insulin play complex roles in the amount and composition of calories ingested, and the utilization and deposition of this energy. Understanding the interplay of these two hormones is complicated because increasing concentrations of corticosterone dose-dependently increase circulating insulin levels. We addressed individual contributions of each hormone by controlling, at steady-state levels, corticosterone (by adrenalectomy and exogenous replacement) and insulin (by streptozotocin-induced destruction of pancreatic beta-cells and exogenous replacement) across a spectrum of concentrations in rats, creating 8 hormonal combinations.
View Article and Find Full Text PDFObjective: We sought to examine insulin-sensitive food intake behavior and neuroendocrine and metabolic variables of rats that had undergone a duodenal-jejunal bypass (DJB).
Summary Of Background Data: A DJB that circumvents the duodenum and proximal jejunum while leaving the stomach unperturbed rapidly improves insulin sensitivity in type 2 diabetic rats. This segment of proximal small intestine is innervated by the gastroduodenal branch of the vagus nerve, the transection of which influences food intake choices in streptozotocin-diabetic rats.
Previous studies have shown that the successive negative contrast procedure, in which food-restricted rats entrained to once daily, brief presentations of 32% sucrose are unexpectedly shifted to a 4% solution, results in an adrenocortical response on the second, but not the first postshift day. We attempted to generalize that finding in our own procedure. In Experiment 1, two groups of rats were given a 32% sucrose solution once daily in their home cages for 14 days before being shifted to a 4% solution.
View Article and Find Full Text PDFPrevious studies have shown reduced hypothalamo-pituitary-adrenal responses to both acute and chronic restraint stressors in rats allowed to ingest highly palatable foods (32% sucrose +/- lard) prior to restraint. In this study we tested the effects of prior access (7 d) to chow-only, sucrose/chow, lard/chow, or sucrose/lard/chow diets on central corticotropin-releasing factor (CRF) expression in rats studied in two experiments, 15 and 240 min after onset of restraint. Fat depot, particularly intraabdominal fat, weights were increased by prior access to palatable food, and circulating leptin concentrations were elevated in all groups.
View Article and Find Full Text PDFCircadian rhythms prepare organisms for predictable events in the 24 h day. These rhythms are entrained by a variety of stimuli. Light is the most ubiquitous and best known zeitgeber, but a number of others have been identified, including food, social cues, locomotor activity, and, most recently drugs of abuse.
View Article and Find Full Text PDFThe common hepatic branch of the vagus nerve negatively regulates lard intake in rats with streptozotocin (STZ)-induced, insulin-dependent diabetes. However, this branch consists of two subbranches: the hepatic branch proper, which serves the liver, and the gastroduodenal branch, which serves the distal stomach, pancreas, and duodenum. The aim of this study was to determine whether the gastroduodenal branch specifically regulates voluntary lard intake.
View Article and Find Full Text PDFIt is becoming increasingly evident that the urocortins (Ucns) and their receptors are involved in the initiation and development of inflammation in the gastrointestinal (GI) tract. There has not been a systematic study of the basal expression of Ucns or their receptors in the GI tract. Here, we examined basal expression of Ucn 2 and its high-affinity receptor, CRF-R2 in the rat GI tract.
View Article and Find Full Text PDFThe common hepatic branch of the vagus nerve is a two-way highway of communication between the brain and the liver, duodenum, stomach and pancreas that regulates many aspects of food intake and metabolism. In this study, we utilized the afferent-specific neurotoxin capsaicin to examine if common hepatic vagal sensory afferents regulate lard intake. Rats implanted with a corticosterone pellet were made diabetic using streptozotocin (STZ) and a subset received steady-state exogenous insulin replacement into the superior mesenteric vein.
View Article and Find Full Text PDFGlucocorticoids act primarily in a feed-forward fashion on brain to activate CNS pathways that implement wanting appropriate to physiological needs. Thus, depending on the available conditions, elevated glucocorticoids may augment the behavioural want to run, fight or feed. Although glucocorticoids stimulate intake of chow, fat and sucrose, insulin appears to sculpt calorie-associated desires toward foods high in fat, acting through hepatic branch afferents of the vagus nerve.
View Article and Find Full Text PDFIn mammals, glucocorticoid actions appear to have evolved to maintain and enhance energy stores to be used for life-saving gluconeogenesis. They act on the brain to stimulate search behaviors, palatable feeding and emotionally relevant memories, and they act on the body to mobilize stored peripheral energy and direct it to central depots that serve the substrate needs of the liver. Our work in rats shows that searching and intake of palatable foods (sucrose, saccharin and lard) are stimulated by corticosterone in a dose-related fashion.
View Article and Find Full Text PDFAlthough high insulin concentrations reduce food intake, low insulin concentrations promote lard intake over chow, possibly via an insulin-derived, liver-mediated signal. To investigate the role of the hepatic vagus in voluntary lard intake, streptozotocin-diabetic rats with insulin or vehicle replaced into either the superior mesenteric or jugular veins received a hepatic branch vagotomy (HV) or a sham operation. All rats received a pellet of corticosterone that clamped the circulating steroid at moderately high concentrations to enhance lard intake.
View Article and Find Full Text PDFThe hypothalamo-pituitary-adrenal (HPA) axis is the critical mediator of the vertebrate stress response system, responding to environmental stressors by maintaining internal homeostasis and coupling the needs of the body to the wants of the mind. The HPA axis has numerous complex drivers and highly flexible operating characterisitics. Major drivers include two circadian drivers, two extra-hypothalamic networks controlling top-down (psychogenic) and bottom-up (systemic) threats, and two intra-hypothalamic networks coordinating behavioral, autonomic, and neuroendocrine outflows.
View Article and Find Full Text PDFBased on observed phenotypic differences in growth and ACTH responses to stress in Sprague Dawley rats obtained from different vendors, we ran head-to-head comparisons on rats obtained from three different vendors, Harlan, Charles River, and Simonsen, with respect to baseline phenotypic differences and a metabolic feedback hypothesis of hypothalamo-pituitary-adrenal (HPA) regulation. Charles River and Harlan rats gained weight faster than Simonsen rats, but chow intake standardized for body weight was not increased, consistent with their greater caloric efficiency. Weight gain was inversely related with mean daily temperatures, without differences in activity levels.
View Article and Find Full Text PDFGlucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a chronic stressor, the steroids act in brain in a feed-forward fashion to recruit a stress-response network that biases ongoing autonomic, neuroendocrine, and behavioral outflow as well as responses to novel stressors. We review evidence for the role of glucocorticoids in activating the central stress-response network, and for mediation of this network by corticotropin-releasing factor (CRF).
View Article and Find Full Text PDFCorticosterone (B) increases and insulin decreases food intake. However, in streptozotocin (STZ)-diabetic rats with high B, low insulin replacement promotes lard intake. To test the role of the liver on this, rats were given STZ and infused with insulin or vehicle into either the superior mesenteric or right jugular vein.
View Article and Find Full Text PDFCentral corticotropin-releasing factor (CRF) networks are recruited by chronic stressors and elevated glucocorticoids (GCs) that initiate recruitment of central CRF activity in the amygdala. Increased central activity of the CRF network stimulates all monoaminergic cell groups, as well as premotor autonomic and other limbic structures resulting in the typical arousal, behavioral changes, autonomic, and neuroendocrine changes that accompany the chronic imposition of a stressor. By contrast, elevated GCs appear, through a variety of means to counteract the effects of central CRF, which they have initiated.
View Article and Find Full Text PDFPsychoneuroendocrinology
October 2005
To test whether glucocorticoids amplify incentive motivation, three groups of rats were adrenalectomized and replaced subcutaneously with pellets of corticosterone (B), containing 0, 30, or 80% B and cholesterol. A fourth group of sham adrenalectomized rats received cholesterol pellets. Animals were placed on a four-arm maze baited with 32% sucrose for 5-min daily sessions.
View Article and Find Full Text PDFRats were used in a successive negative contrast procedure to determine which brain structures were activated by sucrose concentration downshifts, and on what day this occurred. Subjects were given preshift solutions for 12 days before being shifted to their postshift concentrations. Groups included 2 unshifted controls (32%-32% and 4%-4%) and 1 shifted group (32%-4%).
View Article and Find Full Text PDFThis study tested whether pre-training pairings of ingestion of a 32% sucrose solution and injection(s) of corticosterone (B) would enhance later ingestion in the absence of B, and whether these effects would carry over into later contrast-like effects when animals were subsequently shifted to 4% sucrose. Frequency-dependence of these pairings was also examined. Three groups of male Sprague-Dawley rats were adrenalectomized (ADX).
View Article and Find Full Text PDFWe suggested a new model of the effects of glucocorticoids (GCs) exerted during chronic stress, in which GCs directly stimulate activities in the brain while indirectly inhibiting activity in the hypothalamo-pituitary-adrenal (HPA) axis through their metabolic shifts in energy stores in the periphery. This study is an initial test of our model. In a 2 x 2 design, we provided ad lib access to calorically dense lard and sucrose (comfort food) + chow or chow alone, and repeatedly restrained half of the rats in each group for 5 d (3 h/d).
View Article and Find Full Text PDFGlucocorticoids have a major effect on food intake that is underappreciated, although the effects of glucocorticoids on metabolism and abdominal obesity are quite well understood. Physiologically appropriate concentrations of naturally secreted corticosteroids (cortisol in humans, corticosterone in rats) have major stimulatory effects on caloric intake and, in the presence of insulin, preference. We first address the close relationship between glucocorticoids and energy balance under both normal and abnormal conditions.
View Article and Find Full Text PDF