Publications by authors named "Norman Kado"

Biogas consisting primarily of methane (CH) and carbon dioxide (CO) can be upgraded to a transportation fuel referred to as renewable natural gas (RNG) by removing CO and other impurities. RNG has energy content comparable to fossil compressed natural gas (CNG) but with lower life-cycle greenhouse gas (GHG) emissions. In this study, a light-duty cargo van was tested with CNG and two RNG blends on a chassis dynamometer in order to compare the toxicity of the resulting exhaust.

View Article and Find Full Text PDF

There is strong evidence that exposure to fine particulate matter (PM) and a high-fat diet (HFD) increase the risk of mortality from atherosclerotic cardiovascular diseases. Recent studies indicate that PM generated by combustion activates the Aryl Hydrocarbon Receptor (AHR) and inflammatory cytokines contributing to PM-mediated atherogenesis. Here we investigate the effects of components of a HFD on PM-mediated activation of AHR in macrophages.

View Article and Find Full Text PDF

Biodiesel or renewable diesel fuels are alternative fuels produced from vegetable oil and animal tallow that are being considered to help reduce the use of petroleum-based fuels and emissions of air pollutants including greenhouse gases. Here, we analyzed the gene expression of inflammatory marker responses and the cytochrome P450 1A1 (CYP1A1) enzyme after exposure to diesel and biodiesel emission samples generated from an in-use heavy-duty diesel vehicle. Particulate emission samples from petroleum-based California Air Resource Board (CARB)-certified ultralow sulfur diesel (CARB ULSD), biodiesel, and renewable hydro-treated diesel all induced inflammatory markers such as cyclooxygenase-2 (COX)-2 and interleukin (IL)-8 in human U937-derived macrophages and the expression of the xenobiotic metabolizing enzyme CYP1A1.

View Article and Find Full Text PDF

Biogas is a renewable energy source composed of methane, carbon dioxide, and other trace compounds produced from anaerobic digestion of organic matter. A variety of feedstocks can be combined with different digestion techniques that each yields biogas with different trace compositions. California is expanding biogas production systems to help meet greenhouse gas reduction goals.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) contained in airborne particulate matter have been identified as a contributing factor for inflammation in the respiratory tract. Recently, interleukin-33 (IL-33) is strongly suggested to be associated with airway inflammation. Aryl hydrocarbon receptor (AhR) is a receptor for PAHs to regulate several metabolic enzymes, but the relationships between AhR and airway inflammation are still unclear.

View Article and Find Full Text PDF

Biogas and biomethane (=purified biogas) are major renewable fuels that play a pivotal role in the evolving global energy economy. Here, we measure ultrafine particle (UFP; D (particle diameter) < 100 nm) emissions from the combustion of biomethane and biogas produced from five different representative sources: two food waste digesters, two dairy waste digesters, and one landfill. Combustion exhaust for each of these sources is measured from one or more representative sectors including electricity generation, motor vehicles, and household use.

View Article and Find Full Text PDF

Exposures to air pollution in the form of particulate matter (PM) can result in excess production of reactive oxygen species (ROS) in the respiratory system, potentially causing both localized cellular injury and triggering a systemic inflammatory response. PM-induced inflammation in the lung is modulated in large part by alveolar macrophages and their biochemical signaling, including production of inflammatory cytokines, the primary mechanism via which inflammation is initiated and sustained. We developed a robust, relevant, and flexible method employing a rat alveolar macrophage cell line (NR8383) which can be applied to routine samples of PM from air quality monitoring sites to gain insight into the drivers of PM toxicity that lead to oxidative stress and inflammation.

View Article and Find Full Text PDF

Unlabelled: In total, 24 polycyclic aromatic hydrocarbons (PAHs) in both gas and particle phases and 35 nitro-PAHs in particle phase were analyzed in the exhaust from heavy-duty diesel vehicles equipped with after-treatment for particulate matter (PM) and NO(x) control. The test vehicles were carried out using a chassis dynamometer under highway cruise, transient Urban Dynamometer Driving Schedule (UDDS), and idle operation. The after-treatment efficiently abated more than 90% of the total PAHs.

View Article and Find Full Text PDF

Background: The purpose of the present study was to investigate activation of inflammatory markers in human macrophages derived from the U937 cell line after exposure to particulate matter (PM) collected on dairy farms in California and to identify the most potent components of the PM.

Methods: PM from different dairies were collected and tested to induce an inflammatory response determined by the expression of various pro-inflammatory genes, such as Interleukin (IL)-8, in U937 derived macrophages. Gel shift and luciferase reporter assays were performed to examine the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like-receptor 4 (TLR4).

View Article and Find Full Text PDF

The concentrations of polycyclic aromatic hydrocarbons (PAHs) were investigated in a pilot study of field wheat grain as a model indicator for environmental contamination. The edible grain would serve as a portal for human exposure. Wheat grain was initially studied since it is one of the major food crops consumed internationally by many including infants and children.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) can partition from the atmosphere into agricultural crops, contributing to exposure through the dietary pathway. In this study, controlled environmental chamber experiments were conducted to investigate the transfer of PAHs from air into wheat grain, which is a major food staple. A series of PAHs ranging in size from naphthalene to pyrene were maintained at elevated gas-phase concentrations in the chamber housing mature and dry wheat grain both on the plant and with the husk removed.

View Article and Find Full Text PDF

The unregulated emissions from two in-use heavy-duty transit buses fueled by compressed natural gas (CNG) and equipped with oxidation catalyst (OxiCat) control were evaluated. We tested emissions from a transit bus powered by a 2001 Cummins Westport C Gas Plus 8.3-L engine (CWest), which meets the California Air Resources Board's (CARB) 2002 optional NOx standard (2.

View Article and Find Full Text PDF

Exposure to particulate matter air pollution causes inflammatory responses and is associated with the progression of atherosclerosis and increased cardiovascular mortality. Macrophages play a key role in atherogenesis by releasing proinflammatory cytokines and forming foam cells in subendothelial lesions. The present study quantified the inflammatory response in a human macrophage cell line (U937) after exposure to an ambient particulate sample from urban dust (UDP) and a diesel exhaust particulate (DEP).

View Article and Find Full Text PDF

The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition.

View Article and Find Full Text PDF
Article Synopsis
  • - The study uses a continuous flow-through exposure chamber and a mass balance model to explore how chemicals transfer between air and vegetation, specifically with mature bell pepper plants exposed to different pollutants.
  • - Key metrics evaluated include chemical partitioning (Kpa), mass transfer rates (Upa), and loss rates in both the atmosphere and plants, with specific measurements taken for pollutants like phenanthrene, anthracene, fluoranthene, and pyrene.
  • - Results showed varying partitioning values and mass transfer rates, as well as reaction half-lives in air and plants, highlighting the effectiveness of combining experimental measurements with modeling for understanding pollutant uptake in vegetation.
View Article and Find Full Text PDF