Publications by authors named "Norman J Haughey"

The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes.

View Article and Find Full Text PDF

Ceramide C16 is a sphingolipid detected at high levels in several neurodegenerative disorders, including multiple sclerosis (MS). It can be generated de novo or from the hydrolysis of other sphingolipids, such as sphingomyelin or through the recycling of sphingosine, in what is known as the salvage pathway. While the myelin damage occurring in MS suggests the importance of the hydrolytic and salvage pathways, the growing interest on the importance of diet in demyelinating disorders, prompted us to investigate the involvement of de novo ceramide C16 synthesis on disease severity.

View Article and Find Full Text PDF
Article Synopsis
  • Etomoxir is a medicine that has been used for a long time to block a process called fatty acid β-oxidation in cells.
  • Researchers found that etomoxir not only works on one specific protein called Cpt1 but also attaches to many other proteins involved in processing fatty acids in different parts of the cell.
  • When they removed a protein called Pex5 that helps transport certain proteins into a part of the cell called the peroxisome, they discovered that etomoxir affected even more proteins, showing that it isn't a precise tool for studying fatty acid oxidation.
View Article and Find Full Text PDF
Article Synopsis
  • * Despite advancements in understanding EV biology and methodology, challenges persist in areas like nomenclature, separation, and characterization, hindering their application in research and clinical settings.
  • * The International Society for Extracellular Vesicles (ISEV) has released the updated 'Minimal Information for Studies of Extracellular Vesicles' (MISEV2023) to guide researchers on best practices for EV research, encompassing the latest techniques and addressing various methods of EV production and study.
View Article and Find Full Text PDF

Background: Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC.

Methods: We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties.

View Article and Find Full Text PDF

Background: Cognitive decline in Alzheimer's disease (AD) is associated with prion-like tau propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EV). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2(nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that tau expression triggers an elevation in brain ceramides and nSMase2 activity.

View Article and Find Full Text PDF

HIV-1 assembly occurs at the inner leaflet of the plasma membrane (PM) in highly ordered membrane microdomains. The size and stability of membrane microdomains is regulated by activity of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) that is localized primarily to the inner leaflet of the PM. In this study, we demonstrate that pharmacological inhibition or depletion of nSMase2 in HIV-1-producer cells results in a block in the processing of the major viral structural polyprotein Gag and the production of morphologically aberrant, immature HIV-1 particles with severely impaired infectivity.

View Article and Find Full Text PDF

Although HIV-1 Gag is known to drive viral assembly and budding, the precise mechanisms by which the lipid composition of the plasma membrane is remodeled during assembly are incompletely understood. Here, we provide evidence that the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) interacts with HIV-1 Gag and through the hydrolysis of sphingomyelin creates ceramide that is necessary for proper formation of the viral envelope and viral maturation. Inhibition or depletion of nSMase2 resulted in the production of noninfectious HIV-1 virions with incomplete Gag lattices lacking condensed conical cores.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have been proposed to regulate the deposition of Aβ. Multiple publications have shown that APP, amyloid processing enzymes and Aβ peptides are associated with EVs. However, very little Aβ is associated with EVs compared with the total amount Aβ present in human plasma, CSF, or supernatants from cultured neurons.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the progressive accumulation of amyloid-β and hyperphosphorylated tau (pTau), which can spread throughout the brain via extracellular vesicles (EVs). Membrane ceramide enrichment regulated by the enzyme neutral sphingomyelinase 2 (nSMase2) is a critical component of at least one EV biogenesis pathway. Our group recently identified 2,6-Dimethoxy-4-(5-Phenyl-4-Thiophen-2-yl-1H-Imidazol-2-yl)-Phenol (DPTIP), the most potent (30 nM) and selective inhibitor of nSMase2 reported to date.

View Article and Find Full Text PDF

Wilson disease (WD) is a metabolic disorder caused by inactivation of the copper-transporting ATPase 2 (ATP7B) and copper (Cu) overload in tissues. Excess Cu causes oxidative stress and pathologic changes with poorly understood mechanistic connections. In mice with established liver disease, Cu overload activates the stress-sensitive transcription factor Nrf2 (nuclear factor erythroid-derived 2-like 2).

View Article and Find Full Text PDF

Background: HIV infection results in immunometabolic reprogramming. While we are beginning to understand how this metabolic reprogramming regulates the immune response to HIV infection, we do not currently understand the impact of ART on immunometabolism in people with HIV (PWH).

Methods: Serum obtained from HIV-infected ( = 278) and geographically matched HIV seronegative control subjects ( = 300) from Rakai Uganda were used in this study.

View Article and Find Full Text PDF

People living with HIV (PLH) have significantly higher rates of cognitive impairment (CI) and major depressive disorder (MDD) versus the general population. The enzyme neutral sphingomyelinase 2 (nSMase2) is involved in the biogenesis of ceramide and extracellular vesicles (EVs), both of which are dysregulated in PLH, CI, and MDD. Here we evaluated EcoHIV-infected mice for behavioral abnormalities relevant to depression and cognition deficits, and assessed the behavioral and biochemical effects of nSMase2 inhibition.

View Article and Find Full Text PDF

During metabolically demanding physiological states, ruminants and other mammals coordinate nutrient use among tissues by varying the set point of insulin action. This set point is regulated in part by metabolic hormones with some antagonizing (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Extracellular Vesicles (EVs) are linked to the spread of harmful proteins in neurological diseases, prompting research into inhibitors of neutral sphingomyelinase 2 (nSMase2), crucial for EV production.
  • Our team identified PDDC, a potent and selective nSMase2 inhibitor that can enter the brain and effectively lower EV release in both lab settings and living organisms.
  • In experiments with mice after brain injury, PDDC normalized nSMase2 activity and reduced specific types of EVs increased by inflammation, suggesting it could be a valuable treatment for acute brain injury.
View Article and Find Full Text PDF

The fungal isolate myriocin inhibits serine palmitoyltransferase and de novo ceramide synthesis in rodents; however, the effects of myriocin on ceramide concentrations and metabolism have not been previously investigated in ruminants. In our study, 12 non-lactating crossbred ewes received an intravenous bolus of myriocin (0, 0.1, 0.

View Article and Find Full Text PDF

The discovery of novel biomarkers for peripartal diseases in dairy cows can improve our understanding of normal and dysfunctional metabolism, and lead to nutritional interventions that improve health and milk production. Our objectives were to characterize the plasma lipidome and identify metabolites associated with common markers of metabolic disease in peripartal dairy cattle. Multiparous Holstein cows ( = 27) were enrolled 30 d prior to expected parturition.

View Article and Find Full Text PDF

We compared four orthogonal technologies for sizing, counting, and phenotyping of extracellular vesicles (EVs) and synthetic particles. The platforms were: single-particle interferometric reflectance imaging sensing (SP-IRIS) with fluorescence, nanoparticle tracking analysis (NTA) with fluorescence, microfluidic resistive pulse sensing (MRPS), and nanoflow cytometry measurement (NFCM). EVs from the human T lymphocyte line H9 (high CD81, low CD63) and the promonocytic line U937 (low CD81, high CD63) were separated from culture conditioned medium (CCM) by differential ultracentrifugation (dUC) or a combination of ultrafiltration (UF) and size exclusion chromatography (SEC) and characterized by transmission electron microscopy (TEM) and Western blot (WB).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are indispensable mediators of intercellular communication, but they can also assume a nefarious role by ferrying pathological cargo that contributes to neurological, oncological, inflammatory, and infectious diseases. The canonical pathway for generating EVs involves the endosomal sorting complexes required for transport (ESCRT) machinery, but an alternative pathway is induced by the enrichment of lipid membrane ceramides generated by neutral sphingomyelinase 2 (nSMase2). Inhibition of nSMase2 has become an attractive therapeutic strategy for inhibiting EV biogenesis, and a growing number of small-molecule nSMase2 inhibitors have shown promising therapeutic activity in preclinical disease models.

View Article and Find Full Text PDF

Cognitive impairment remains frequent and heterogeneous in presentation and severity among virally suppressed (VS) women with HIV (WWH). We identified cognitive profiles among 929 VS-WWH and 717 HIV-uninfected women from 11 Women's Interagency HIV Study sites at their first neuropsychological (NP) test battery completion comprised of: Hopkins Verbal Learning Test-Revised, Trail Making, Symbol Digit Modalities, Grooved Pegboard, Stroop, Letter/Animal Fluency, and Letter-Number Sequencing. Using 17 NP performance metrics (T-scores), we used Kohonen self-organizing maps to identify patterns of high-dimensional data by mapping participants to similar nodes based on T-scores and clustering those nodes.

View Article and Find Full Text PDF

Chronic inflammation is thought to contribute to the early pathogenesis of Alzheimer's disease (AD). However, the precise mechanism by which inflammatory cytokines promote the formation and deposition of Aβ remains unclear. Available data suggest that applications of inflammatory cytokines onto isolated neurons do not promote the formation of Aβ, suggesting an indirect mechanism of action.

View Article and Find Full Text PDF

Introduction: We have demonstrated that asymptomatic cerebral small vessel disease (cSVD) measured by white matter hyperintensity volume is associated with reduced manipulative manual dexterity on the Grooved Peg Board Test (GPBT) in middle-aged healthy individuals with a family history of early coronary artery disease. In this current study, we aim to identify the association of subcortical white matter microstructural impairment measured by diffusion tensor imaging, manual dexterity measured by GPBT and circulating serums ceramide, another marker for white matter injury. We hypothesize that lower regional fractional anisotropy (rFA) is associated with worse performance on GPBT and elevated serum ceramides in the same study population.

View Article and Find Full Text PDF

Choline and methionine may serve unique functions to alter hepatic energy metabolism. Our objective was to trace carbon flux through pathways of oxidation and glucose metabolism in bovine hepatocytes exposed to increasing concentrations of choline chloride (CC) and D,L-methionine (DLM). Primary hepatocytes were isolated from 4 Holstein calves and maintained for 24 h before treatment with CC (0, 10, 100, 1000 μmol/L) and DLM (0, 100, 300 μmol/L) in a factorial design.

View Article and Find Full Text PDF