Freshwater lakes and ponds present an ecological interface between humans and a variety of host organisms. They are a habitat for the larval stage of many insects and may serve as a medium for intraspecies and interspecies transmission of viruses such as avian influenza A virus. Furthermore, freshwater bodies are already known repositories for disease-causing viruses such as Norwalk Virus, Coxsackievirus, Echovirus, and Adenovirus.
View Article and Find Full Text PDFThe lack of sensitive, specific, multiplexable assays for most human proteins is the major technical barrier impeding development of candidate biomarkers into clinically useful tests. Recent progress in mass spectrometry-based assays for proteotypic peptides, particularly those with specific affinity peptide enrichment, offers a systematic and economical path to comprehensive quantitative coverage of the human proteome. A complete suite of assays, e.
View Article and Find Full Text PDFBackground: Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing.
View Article and Find Full Text PDFA method (denoted SISCAPA) for quantitation of peptides in complex digests is described. In the method, anti-peptide antibodies immobilized on 100 nanoliter nanoaffinity columns are used to enrich specific peptides along with spiked stable-isotope-labeled internal standards of the same sequence. Upon elution from the anti-peptide antibody supports, electrospray mass spectrometry is used to quantitate the peptides (natural and labeled).
View Article and Find Full Text PDFThe abundance profile of the human urinary proteome is known to change as a result of diseases or drug toxicities, particularly of those affecting the kidney and the urogenital tract. A consequence of such insults is the ability to identify proteins in urine, which may be useful as quantitative biomarkers. To succeed in discovering them, reproducible urine sample preparation methods and good protein resolution in two-dimensional electrophoresis (2-DE) gels for parallel semiquantitative protein measurements are desirable.
View Article and Find Full Text PDFWe propose a system for continuing surveillance of viral pathogens circulating in large human populations. We base this system on the physical isolation of viruses from large pooled samples of human serum and plasma (e.g.
View Article and Find Full Text PDFPlasma contains numerous and diverse proteins with existing and potential therapeutic value. Plasma has been used clinically as both a source of purified derivatives for treating diseases such as hemophilia, and as a diagnostic medium. Recent research directed towards mining plasma's true potential takes advantage of state-of-the-art proteomic analytical methods to develop multi-protein, disease-specific biomarker panels to improve the reliability and specificity of diagnostics.
View Article and Find Full Text PDFMol Cell Proteomics
November 2002
The human plasma proteome holds the promise of a revolution in disease diagnosis and therapeutic monitoring provided that major challenges in proteomics and related disciplines can be addressed. Plasma is not only the primary clinical specimen but also represents the largest and deepest version of the human proteome present in any sample: in addition to the classical "plasma proteins," it contains all tissue proteins (as leakage markers) plus very numerous distinct immunoglobulin sequences, and it has an extraordinary dynamic range in that more than 10 orders of magnitude in concentration separate albumin and the rarest proteins now measured clinically. Although the restricted dynamic range of conventional proteomic technology (two-dimensional gels and mass spectrometry) has limited its contribution to the list of 289 proteins (tabulated here) that have been reported in plasma to date, very recent advances in multidimensional survey techniques promise at least double this number in the near future.
View Article and Find Full Text PDF