Publications by authors named "Norman Fultang"

MCL1 is a member of the BCL2 family of apoptosis regulators, which play a critical role in promoting cancer survival and drug resistance. We previously described PRT1419, a potent, MCL1 inhibitor with anti-tumor efficacy in various solid and hematologic malignancies. To identify novel biomarkers that predict sensitivity to MCL1 inhibition, we conducted a gene essentiality analysis using gene dependency data generated from CRISPR/Cas9 cell viability screens.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of leukocytes that are important for tumorigenesis and tumor immunotherapy. They comprise up to 10% of leukocytes in the blood of tumor patients and their depletion may be required for successful tumor immunotherapy. However, the identity of MDSCs remains obscure, primarily due to their heterogeneity and lack of a known lineage-specific transcription factor specifying their differentiation.

View Article and Find Full Text PDF

Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes.

View Article and Find Full Text PDF

Myeloid-derived Suppressor Cells (MDSCs) are a sub-population of leukocytes that are important for carcinogenesis and cancer immunotherapy. During carcinogenesis or severe infections, inflammatory mediators induce MDSCs aberrant differentiation of myeloid precursors. Although several transcription factors, including C/EBPβ, STAT3, c-Rel, STAT5, and IRF8, have been reported to regulate MDSC differentiation, none of them are specifically expressed in MDSCs.

View Article and Find Full Text PDF

Neuroblastoma is the most common inheritable, solid neoplasm in children found under the age of 7 and accounts for approximately 7% of childhood cancers. A common treatment that has been prescribed for over a decade is retinoid therapy [using all‑trans retinoic acid (RA)]. Treatment with this differentiating agent has been revealed to progress the cells from their stem‑cell state to a mature neuronal state gaining classical neuronal characteristics, including the suppression of proliferation.

View Article and Find Full Text PDF

Chemoresistance is one of the leading causes of mortality in breast cancer (BC). Understanding the molecules regulating chemoresistance is critical in order to combat chemoresistant BC. Drug efflux pump ABCB1 is overexpressed in chemoresistant neoplasms where it effluxes various chemotherapeutic agents from cells.

View Article and Find Full Text PDF

Triple Negative Breast Cancer (TNBC), the most aggressive subtype of breast cancer, is characterized by the absence of hormone receptors usually targeted by hormone therapies like Tamoxifen. Because therapy success and survival rates for TNBC lag far behind other breast cancer subtypes, there is significant interest in developing novel anti-TNBC agents that can target TNBC specifically, with minimal effects on non-malignant tissue. To this aim, our study describes the anti-TNBC effect of strictinin, an ellagitanin previously isolated from Myrothamnus flabellifolius.

View Article and Find Full Text PDF