Publications by authors named "Norman C Duke"

In the conventional view, species are separate gene pools delineated by reproductive isolation (RI). In an alternative view, species may also be delineated by a small set of 'speciation genes' without full RI, a view that has gained broad acceptance. A recent survey, however, suggested that the extensive literature on 'speciation with gene flow' is mostly (if not all) about exchanges in the early stages of speciation.

View Article and Find Full Text PDF

Between late 2015 and early 2016, more than 7,000 ha of mangrove forest died along the coastline of the Gulf of Carpentaria, in northern Australia. This massive die-off was preceded by a strong 2015/2016 El Niño event, resulting in lower precipitation, a drop in sea level and higher than average temperatures in northern Australia. In this study, we investigated the role of hydraulic failure in the mortality and recovery of the dominant species, , 2 years after the mortality event.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic studies are advancing to analyze entire communities, focusing on the ~70 species of mangroves that dominate tropical coastal ecosystems, and researchers have sequenced genomes of 32 mangrove species along with 30 other related species.
  • The findings indicate that mangroves have independently originated 27 times, but despite this, there is only a minor increase in species diversity due to common extinction, possibly linked to historical sea-level changes.
  • Human activities are likely to worsen the effects of future sea-level rises, raising concerns about the irreversible impacts on mangrove ecosystems and coastal biodiversity.
View Article and Find Full Text PDF

Historic climate changes drive geographical populations of coastal plants to contract and recover dynamically, even die out completely. Species suffering from such bottlenecks usually lose intraspecific genetic diversity, but how do these events influence population subdivision patterns of coastal plants? Here, we investigated this question in the typical coastal plant: mangrove species Aegiceras corniculatum. Inhabiting the intertidal zone of the tropical and subtropical coast of the Indo-West Pacific oceans, its populations are deemed to be greatly shaped by historic sea-level fluctuations.

View Article and Find Full Text PDF

This study investigates the underlying climate processes behind the largest recorded mangrove dieback event along the Gulf of Carpentaria coast in northern Australia in late 2015. Using satellite-derived fractional canopy cover (FCC), variation of the mangrove canopies during recent decades are studied, including a severe dieback during 2015-2016. The relationship between mangrove FCC and climate conditions is examined with a focus on the possible role of the 2015-2016 El Niño in altering favorable conditions sustaining the mangroves.

View Article and Find Full Text PDF

The remote Gulf of Carpentaria (GoC) represents 10% of Australia's coastline. This large, shallow sea supports high-value fishing activities and habitat for threatened species, and is a sink for abandoned, lost and discarded fishing gear (ALDFG) 'ghost nets', most originating from fishing activities outside of Australia's Exclusive Economic Zone. With growing concerns about the plastic waste along the world's coastlines, we retrospectively analyzed ghost net sighting information from four aerial surveys across 15 years, to investigate whether densities of ghost nets are changing through time or in space.

View Article and Find Full Text PDF

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km , from Australia's coral reefs to terrestrial Antarctica.

View Article and Find Full Text PDF

Sequencing multiple species that share the same ecological niche may be a new frontier for genomic studies. While such studies should shed light on molecular convergence, genomic-level analyses have been unsuccessful, due mainly to the absence of empirical controls. Woody plant species that colonized the global tropical coasts, collectively referred to as mangroves, are ideal for convergence studies.

View Article and Find Full Text PDF

Unlabelled: Allopatric speciation requiring an unbroken period of geographical isolation has been the standard model of neo-Darwinism. While doubts have been repeatedly raised, strict allopatry without any gene flow remains a plausible mechanism in most cases. To rigorously reject strict allopatry, genomic sequences superimposed on the geological records of a well-delineated geographical barrier are necessary.

View Article and Find Full Text PDF

The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance.

View Article and Find Full Text PDF

Mangroves invade some very marginal habitats for woody plants-at the interface between land and sea. Since mangroves anchor tropical coastal communities globally, their origin, diversification and adaptation are of scientific significance, particularly at a time of global climate change. In this study, a combination of single-molecule long reads and the more conventional short reads are generated from for the assembly of its genome to a near chromosome level.

View Article and Find Full Text PDF

Background: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation.

Results: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods.

View Article and Find Full Text PDF

Glacial vicariance is thought to influence population dynamics and speciation of many marine organisms. Mangroves, a plant group inhabiting intertidal zones, were also profoundly influenced by Pleistocene glaciations. In this study, we investigated phylogeographic patterns of a widespread mangrove species and a narrowly distributed, closely related species to infer their divergence histories and related it to historical geological events.

View Article and Find Full Text PDF

Avicennia L. (Avicenniaceae), one of the most diverse mangrove genera, is distributed widely in tropical and subtropical intertidal zones worldwide. Five species of Avicennia in the Indo-West Pacific region have been previously described.

View Article and Find Full Text PDF

Mangrove tidal wetland habitats are recognised as highly vulnerable to large and chronic oil spills. This review of current literature and public databases covers the last 6 decades, summarising global data on oil spill incidents affecting, or likely to have affected, mangrove habitat. Over this period, there have been at least 238 notable oil spills along mangrove shorelines worldwide.

View Article and Find Full Text PDF

Climate change with human direct pressures represent significant threats to the resilience of shoreline habitats like mangroves. A rapid, whole-of-system assessment strategy is needed to evaluate such threats, better linking innovative remote sensing with essential on-ground evaluations. Using the Shoreline Video Assessment Method, we surveyed around 190km of the mostly mangrove-fringed (78%) coastline of Kien Giang Province, Vietnam.

View Article and Find Full Text PDF

Background: Mangroves are key components of coastal ecosystems in tropical and subtropical regions worldwide. However, the patterns and mechanisms of modern distribution of mangroves are still not well understood. Historical vicariance and dispersal are two hypothetic biogeographic processes in shaping the patterns of present-day species distributions.

View Article and Find Full Text PDF

Population genetics of species living in marginal habitats could be particularly informative about the genetics of adaptation, but such analyses have not been readily feasible until recently. Sonneratia alba, a mangrove species widely distributed in the Indo-West Pacific, provides a very suitable system for the study of local adaptation. In this study, we analyzed DNA variation by pooling 71 genes from 85-100 individuals for DNA sequencing.

View Article and Find Full Text PDF

Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production.

View Article and Find Full Text PDF

Low concentrations of herbicides (up to 70 ng l(-1)), chiefly diuron (up to 50 ng l(-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-east Queensland, Australia. Diuron and atrazine (up to 1.1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows.

View Article and Find Full Text PDF

Mangroves are sensitive to the root application of Photosystem II inhibiting herbicides and Avicennia marina is more sensitive than other mangroves tested. Seedlings of four mangrove species, including two salt-excreting species (A. marina and Aegiceras corniculatum) and two salt-excluding species (Rhizophora stylosa and Ceriops australis) were treated with a range of concentrations of the herbicides diuron, ametryn and atrazine.

View Article and Find Full Text PDF

Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.

View Article and Find Full Text PDF

A correlation between petroleum hydrocarbon concentrations in sediments and chlorophyll-deficient mutations in mangroves may occur also in Australian mangroves. Earlier reports of such mutations in the Caribbean area were evident in viviparous propagules of the common mangrove genera, Rhizophora, borne on otherwise normal trees. These mutant propagules were termed albinos' since they lacked chlorophyll and normal green coloration, leaving them white, yellow or red.

View Article and Find Full Text PDF