Publications by authors named "Norma Olivares-Zavaleta"

Trachoma, caused by the obligate intracellular organism Chlamydia trachomatis, is the world's leading cause of preventable blindness for which a vaccine is needed. We have previously shown that a plasmid-deficient live-attenuated trachoma vaccine delivered ocularly to macaques elicited either solid or partial protective immunity against a virulent ocular challenge. Solidly protected macaques shared the same MHC class II alleles implicating CD4(+) T cells in superior protective immunity.

View Article and Find Full Text PDF

Background: Chlamydia trachomatis is the etiological agent of trachoma the world's leading cause of infectious blindness. Here, we investigate whether protracted clearance of a primary infection in nonhuman primates is attributable to antigenic variation or related to the maturation of the anti-chlamydial humoral immune response specific to chlamydial antigens.

Methodology/principal Findings: Genomic sequencing of organisms isolated throughout the protracted primary infection revealed that antigenic variation was not related to the inability of monkeys to efficiently resolve their infection.

View Article and Find Full Text PDF

Blinding trachoma is an ancient neglected tropical disease caused by Chlamydia trachomatis for which a vaccine is needed. We describe a live-attenuated vaccine that is safe and efficacious in preventing trachoma in nonhuman primates, a model with excellent predictive value for humans. Cynomolgus macaques infected ocularly with a trachoma strain deficient for the 7.

View Article and Find Full Text PDF

Chlamydia pneumoniae is an omnipresent obligate intracellular bacterial pathogen that infects numerous host species. C. pneumoniae infections of humans are a common cause of community acquired pneumonia but have also been linked to chronic diseases such as atherosclerosis, Alzheimer's disease, and asthma.

View Article and Find Full Text PDF

Chlamydia trachomatis is a human pathogen of global importance. An obstacle to studying the pathophysiology of human chlamydial disease is the lack of a suitable murine model of C. trachomatis infection.

View Article and Find Full Text PDF

Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies.

View Article and Find Full Text PDF

Here we report on the safety, immunogenicity, and vaccine efficacy of the naturally occurring plasmid-free attenuated Chlamydia trachomatis L2-25667R (L2R) strain in a murine infection model. Intravaginal immunization induced both chlamydial specific serum antibody and systemic CD4(+) Th1 biased immune responses but failed to induce local IgA antibodies. Immunization induced no pathological changes in the urogenital tract.

View Article and Find Full Text PDF