Type-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies have shown great advancements in developing an implantable artificial pancreas.
View Article and Find Full Text PDFAcoustic signals are important markers to monitor physiological and pathological conditions, e.g., heart and respiratory sounds.
View Article and Find Full Text PDFIn the perspective of producing a rigid renewable and environmentally friendly rigid packaging material, two comb-like copolymers of cellulose acetate (AC) and oligo(lactic acid) OLA, feeding different percentages of oligo(lactic acid) segments, were prepared by chemical synthesis in solvent or reactive extrusion in the melt, using a diepoxide as the coupling agent and were used as compatibilizers for poly(lactic acid)/plasticized cellulose acetate PLA/pAC blends. The blends were extruded at 230 °C or 197 °C and a similar compatibilizing behavior was observed for the different compatibilizers. The compatibilizer C1 containing 80 wt% of AC and 14 wt% of OLA resulted effective in compatibilization and it was easily obtained by reactive extrusion.
View Article and Find Full Text PDFIn the present study, for the first time the evolution of tensile mechanical properties of different poly(3-hydroxybutyrate--3-hydroxyvalerate) copolymers (PHBV8 and PHBV12, with 8 mol% and 12 mol% of HV co-units, respectively) as a function of the storage time at room temperature has been investigated in parallel with the quantification of the crystalline, mobile amorphous, and rigid amorphous fractions. A comparison with the evolution of the crystalline and amorphous fractions in the homopolymer poly(3-hydroxybutyrate) (PHB) was also performed. For all the samples, the crystallinity was found to slightly increase during storage.
View Article and Find Full Text PDFThe thermal and mechanical properties of biocomposites of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) containing 5 wt % of valerate units, with 20 wt % of potato pulp powder were investigated in order () to obtain information on possible miscibility/compatibility between the biopolymers and the potato pulp, and () to quantify how the addition of this filler modifies the properties of the polymeric material. The potato pulp powder utilized is a residue of processing for the production and extraction of starch. The final aim of this study is the preparation of PHBV based materials with reduced cost, thanks to biomass valorization, in agreement with the circular economy policy, as result of the incorporation of agricultural organic waste.
View Article and Find Full Text PDFThe thermal, mechanical and viscoelastic properties of biocomposites of poly(lactic acid) (PLA) with 20 wt.% of potato pulp powder were investigated. The potato pulp powder utilized is a byproduct from the production and extraction of starch.
View Article and Find Full Text PDFThe thermal, mechanical, and rheological properties of biocomposites of poly(lactic acid) (PLA) with potato pulp powder were investigated in order to (1) quantify how the addition of this filler modifies the structure of the polymeric material and (2) to obtain information on the possible miscibility and compatibility between PLA and the potato pulp. The potato pulp powder utilized is a residue of the processing for the production and extraction of starch. The study was conducted by analyzing the effect of the potato pulp concentration on the thermal, mechanical, and rheological properties of the biocomposites.
View Article and Find Full Text PDFPoly(lactic acid)/triacetine plasticized cellulose acetate (PLA/pCA) blends were prepared by extrusion at two different temperatures and tetrabutylammonium tetraphenyl borate (TBATPB) was added as a transesterification catalyst to reactively promote the formation of PLA-CA copolymer during the reactive extrusion. The occurrence of chain scission in the PLA phase and branching/crosslinking in the CA phase in the presence of TBATPB, resulting also in a darkening of the material, were demonstrated by studying torque measurements and by performing proper thermogravimetric tests on CA with the different additives. Tensile and impact tests onto the blends prepared at the lower temperature showed better properties than the ones obtained at a higher temperature.
View Article and Find Full Text PDFIn this work, composites based on poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHB-HV) and waste wood sawdust (SD) fibers, a byproduct of the wood industry, were produced by melt extrusion and characterized in terms of processability, thermal stability, morphology, and mechanical properties in order to discriminate the formulations suitable for injection molding. Given their application in agriculture and/or plant nursery, the biodegradability of the optimized composites was investigated under controlled composting conditions in accordance with standard methods (ASTM D5338-98 and ISO 20200-2004). The optimized PHB-HV/SD composites were used for the production of pots by injection molding and their performance was qualitatively monitored in a plant nursery and underground for 14 months.
View Article and Find Full Text PDFIn order to produce sustainable, bio-based and highly biodegradable materials, composites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and fibers of (PO), a dominant Mediterranean seagrass, were produced by simple melt mixing and characterized in terms of thermal stability, morphology and rheological/mechanical properties. In view of their potential application in marine environments, degradation of the developed composites was evaluated under simulated and real marine environmental conditions for 1 year. Using 10 wt % of acetyl tributyl citrate (ATBC) as a plasticizer, smooth processing was achieved for up to 30 wt % of PO fibers, despite the reduction of the melt fluidity observed with increasing fiber loading.
View Article and Find Full Text PDFPoly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate--terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK). All of the formulations could be processed by blowing extrusion and the obtained films showed mechanical properties dependent on the LAK content.
View Article and Find Full Text PDFBio-composites based on polyhydroxyalkanoates (PHAs) and fibres of (PO) were investigated to assess their processability by extrusion, mechanical properties, and potential biodegradability in a natural marine environment. PHAs were successfully compounded with PO fibres up to 20 wt % while, at 30 wt % of fibres, the addition of 10 wt % of polyethylene glycol (PEG 400) was necessary to improve their processability. Thermal, rheological, mechanical, and morphological characterizations of the developed composites were conducted and the degradation of composite films in a natural marine habitat was evaluated in a mesocosm by weight loss measure during an incubation period of six months.
View Article and Find Full Text PDF