Biochemical studies of plant auxin transporters in vivo are made difficult by the presence of multiple auxin transporters and auxin-interacting proteins. Furthermore, the expression level of most such transporters in plants is likely to be too low for purification and downstream functional analysis. Heterologous expression systems should address both of these issues.
View Article and Find Full Text PDFThe cellular import of the hormone auxin is a fundamental requirement for the generation of auxin gradients that control a multitude of plant developmental processes. The AUX/LAX family of auxin importers, exemplified by AUX1 from Arabidopsis (Arabidopsis thaliana), has been shown to mediate auxin import when expressed heterologously. The quantitative nature of the interaction between AUX1 and its transport substrate indole-3-acetic acid (IAA) is incompletely understood, and we sought to address this in the present investigation.
View Article and Find Full Text PDF