Publications by authors named "Noriyuki Sanechika"

Deuterium-depleted water (DDW) is used in the treatment of many diseases, including cancer and diabetes. To detect the effect of DDW on gene expression and activation of the insulin-responsive transporter GLUT4 as a mechanism for improving the pathology of diabetes, we investigated the GLUT4 expression and glucose uptake at various concentrations of DDW using the myoblast cell line C2C12 differentiated into myotubes. GLUT4 gene expression significantly increased under deuterium depletion, reaching a maximum value at a deuterium concentration of approximately 50 ppm, which was approximately nine times that of natural water with a deuterium concentration of 150 ppm.

View Article and Find Full Text PDF

(1) Background: Renal dysfunction and hypertension are mutually aggravating factors; however, the details of their interaction remain unclear. In a study using renal tissue from diabetic rats, we found that β1-integrin, a cell-substrate adhesion molecule, is specifically phosphorylated in juxtaglomerular cells that secrete renin, a blood pressure regulator. (2) Methods: A mouse juxtaglomerular cell line (As4.

View Article and Find Full Text PDF

Bioartificial renal tubule devices (BTD) use cell therapy to improve conditions commonly observed in recipients of artificial kidneys for treatment of kidney diseases. We previously reported significant improvement of the condition of acute kidney injury (AKI) animals after treatment with BTD prepared with lifespan-extended human renal proximal tubular cells (hRPTEC). However, a major obstacle to use of BTD for patients is their biological safety, because hRPTEC are cultured in medium containing fetal calf serum.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI), accompanied by the development of systemic inflammatory response syndrome and multiorgan dysfunction syndrome, is associated with a high risk of death. Bioartificial renal tubule device (BTD) is a cell therapy that improves the conditions common to artificial kidney recipients treated for kidney diseases. In this paper, we describe the establishment of BTD with lifespan-extended human renal proximal tubular epithelial cells.

View Article and Find Full Text PDF

Background: The bioartificial renal tubule device is a cell therapy system for renal failure. The major obstacle in the development of the bioartificial renal tubule device is the obtainment of a large number of viable renal tubule cells to seed on the inner surface of hollow fibers. Although our previous studies had used a transformed cell line, they may be dangerous for clinical uses.

View Article and Find Full Text PDF

Eukaryotic DNA replication takes place in the replication factories, where replication proteins are properly assembled to form replication forks. Thus, recruitment of DNA replication origins to the replication factories must be the key step for the regulation of DNA replication. The transcription factor Runx1 associates with the nuclear matrix, the putative substructure of DNA replication factories.

View Article and Find Full Text PDF