Publications by authors named "Noriyuki Nagaoka"

Oral bacteria cause tooth caries and periodontal disease. Much research is being conducted to prevent both major oral diseases by rendering dental materials' antimicrobial potential. However, such antimicrobial materials are regarded as 'combination' products and face high hurdles for regulatory approval.

View Article and Find Full Text PDF

Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium.

View Article and Find Full Text PDF

Osteocytes form a cellular network by gap junctions between their cell processes. This network is important since intercellular communication via the network is essential for bone metabolism. However, the factors that influence the formation of this osteocyte network remain unknown.

View Article and Find Full Text PDF

Biological materials have properties like great strength and flexibility that are not present in synthetic materials. Using the ribs of crucian carp as a reference, we investigated the mechanisms behind the high mechanical properties of this rib bone, and found highly oriented layers of calcium phosphate (CaP) and collagen fibers. To fabricate a fish-rib-bone-mimicking membrane with similar structure and mechanical properties, this study involves (1) the rapid synthesis of plate-like CaP crystals, (2) the layering of CaP-gelatin hydrogels by gradual drying, and (3) controlling the shape of composite membranes using porous gypsum molds.

View Article and Find Full Text PDF

Despite being able to adhesively restore teeth, adhesives and cement do not possess any anticariogenic protection potential, by which caries recurrence may still occur and reduce the clinical lifetime of adhesive restorations. Several antibacterial agents have been incorporated into dental adhesives and cement to render them anticariogenic. Due to an additional therapeutic effect, such materials are classified as 'dental combination products' with more strict market regulations.

View Article and Find Full Text PDF

The objective of this study was to first identify the timing and location of early mineralization of mouse first molar, and subsequently, to characterize the nucleation site for mineral formation in dentin from a materials science viewpoint and evaluate the effect of environmental cues (pH) affecting early dentin formation. Early dentin mineralization in mouse first molars began in the buccal central cusp on post-natal day 0 (P0), and was first hypothesized to involve collagen fibers. However, elemental mapping indicated the co-localization of phospholipids with collagen fibers in the early mineralization area.

View Article and Find Full Text PDF

Zirconia ceramics have been widely used in dentistry. Herein, we assess the surface morphology, surface texture, and osteoblast response of additively manufactured zirconia and alumina-toughened zirconia (ATZ) in comparison with titanium. The surface roughness, contact angle, and surface microstructure of titanium sandblasted with large-grit alumina and subsequently acid-etched using 18% HCl and 49% HSO (SLA-titanium), uniaxially pressed zirconia (UP zirconia), additively manufactured zirconia (AM zirconia), and additively manufactured ATZ (AM ATZ) were investigated.

View Article and Find Full Text PDF

This study investigated the effects of a multifunctional acrylate copolymer-Trimethylolpropane Triacrylate (TMPTA) and Di-pentaerythritol Polyacrylate (A-DPH)-on the mechanical properties of chemically polymerized acrylic resin and its bond strength to a CAD/CAM polymethyl methacrylate (PMMA) disk. The methyl methacrylate (MMA) samples were doped with one of the following comonomers: TMPTA, A-DPH, or Trimethylolpropane Trimethacrylate (TMPTMA). The doping ratio ranged from 10 wt% to 50 wt% in 10 wt% increments.

View Article and Find Full Text PDF

Bone apatite crystals grow in clusters, but the microstructure of these clusters is unknown. This study compares the structural and compositional differences between bone apatite clusters formed in intramembranous (IO) and endochondral ossification (EO). Calvaria (IO) and femurs (EO) are isolated from mice at embryonic days (E) 14.

View Article and Find Full Text PDF

All-ceramic restorations have become increasingly popular in dentistry. Toward ensuring that these restorations adhere to the tooth structure, this study determines the optimal femtosecond laser (FL) treatment parameters for lithium disilicate glass-ceramics and highly translucent zirconia ceramics with respect to surface morphology. For both the ceramics, the following surface conditions were investigated: (1) as-sintered; (2) AlO sandblasted; (3) FL treatment (dot pattern with line distances of 14, 20, and 40 µm); (4) FL treatment (crossed-line pattern with a line distance of 20 and 40 µm).

View Article and Find Full Text PDF

Inorganic pigments have been widely used due to their low cost of production, strong hiding power, and chemical resistance; nevertheless, they have limited hue width and chromaticity. To eliminate these disadvantages, we herein propose the use of an ingenious biotemplate technique to produce Al-enriched biogenic iron oxide (BIOX) materials. Spectrophotometric color analysis showed that high levels of Al inclusion on heat-treated BIOX samples produced heightened yellowish hues and lightness.

View Article and Find Full Text PDF
Article Synopsis
  • * Characterization techniques like FT-IR and EA were used to analyze the NPCM-treated LCNFs, while their thermal properties and flame resistance were assessed using TGA, DSC, LOI, and UL-94V tests.
  • * The results showed a significant improvement in flame resistance (LOI values increased from 20 to 45), as well as enhanced mechanical properties like bending strength in the treated fabrics, suggesting that NPCM effectively enhances both fire
View Article and Find Full Text PDF

Introduction: Osteocytes play a role as mechanosensory cells by sensing flow-induced mechanical stimuli applied on their cell processes. High-resolution imaging of osteocyte processes and the canalicular wall are necessary for the analysis of this mechanosensing mechanism. Focused ion beam-scanning electron microscopy (FIB-SEM) enabled the visualization of the structure at the nanometer scale with thousands of serial-section SEM images.

View Article and Find Full Text PDF

Objectives: The aim of this study was to evaluate the mechanical properties, bonding performance and anti-microbial activity of a novel composite cement containing cetylpyridinium chloride (CPC) modified montmorillonite ('CPC-Mont'), and using these parameters to determine the optimal particle size and concentration of CPC-Mont the composite cement can be loaded with.

Methods: CPC-Mont particles with a median diameter of 30 and 7 µm were prepared and added to a composite cement at a concentration of 2, 3, 4, 5 and 7.5 wt%.

View Article and Find Full Text PDF

Purpose: To evaluate effect of air-particle abrasion protocol and primer on surface topography and bond strength of resin cement to high-translucent zirconia ceramics.

Materials And Methods: Two hundred disk-shaped high-translucent zirconia specimens of 5Y-PSZ were prepared. The specimens were assigned to 5 groups in terms of particle type and air-particle abrasion pressure: (1) control, (2) alumina with 0.

View Article and Find Full Text PDF

Several dental materials contain silver for antibacterial effect, however the effect is relatively low. The reason for the lower antibacterial efficacy of silver is considered to be the fact that silver ions bind to chloride ions in saliva. To develop new effective silver antibacterial agents that can be useful in the mouth, we synthesized two novel amino acid (methionine or histidine)-silver complexes (Met or His-Ag) loaded with montmorillonite (Mont) and analyzed their antibacterial efficacy.

View Article and Find Full Text PDF

Bone regeneration was one of the earliest fields to develop in the context of tissue regeneration, and currently, repair of small-sized bone defects has reached a high success rate. Future researches are expected to incorporate more advanced techniques toward achieving rapid bone repair and modulation of the regenerated bone quality. For these purposes, it is important to have a more integrative understanding of the mechanisms of bone formation and maturation from multiple perspectives and to incorporate these new concepts into the development and designing of novel materials and techniques for bone regeneration.

View Article and Find Full Text PDF

Despite the fact that various reports have been discussing bone tissue regeneration, precise bone tissue manipulation, such as controlling the physical properties of the regenerated bone tissue, still remains a big challenge. Here, we focused on the teleost fish ribs showing flexible and tough mechanical properties to obtain a deeper insight into the structural and functional features of bone tissue from different species, which would be valuable for the superior design of bone-mimicking materials. Herein, we examined their compositions, microstructure, histology, and mechanical properties.

View Article and Find Full Text PDF

This study investigated the mechanical properties, bond ability, and crystallographic forms of different sites in a highly translucent, multi-layered zirconia disk. Flexural properties, bond ability to resin cement, and phase composition were investigated at three sites of a highly translucent, multi-layered zirconia disk: incisal, middle, and cervical. Flexural strength (FS) and flexural modulus (FM) were measured with static three-point flexural test.

View Article and Find Full Text PDF

This study aimed to investigate whether inorganic elements of polymer-infiltrated ceramic (PIC) and microfilled resin (MFR) for CAD/CAM would affect initial bond strength to luting agent. Inorganic elements of PIC and MFR were different with shape and ingredient observed by SEM, STEM and EDS. Microtensile bond strengths (µTBS) value of PIC was increased by 10-methacryloyloxydecyl dihydrogen phosphate (MDP) and acetic acid (AA)- or MDP-activated silane treatment, and further increased by succeeding heat treatment (HT).

View Article and Find Full Text PDF

Naturally occurring tubular iron oxides produced by aquatic bacteria in spp. are promising raw materials for hematite-based red pigments because of the higher heat resistance as compared with chemically synthesized hematite compounds. Here, we report iron oxide red pigments prepared through an additive deposition of aluminum on culture-based biogenous iron oxide (cBIOX) sheaths using an artificial culture system of strain OUMS1.

View Article and Find Full Text PDF

Objectives: To synthesize and characterize brushite particles in the presence of acidic monomers (acrylic acid/AA, citric acid/CA, and methacryloyloxyethyl phosphate/MOEP) and evaluate the effect of these particles on degree of conversion (DC), flexural strength/modulus (FS/FM) and ion release of experimental composites.

Methods: Particles were synthesized by co-precipitation with monomers added to the phosphate precursor solution and characterized for monomer content, size and morphology. Composites containing 20 vol% brushite and 40 vol% reinforcing glass were tested for DC, FS and FM (after 24 h and 60 d in water), and 60-day ion release.

View Article and Find Full Text PDF

Objective: Hydrofluoric-acid etching followed by silanization is a routine clinical protocol for durable bonding to glass ceramics. Simplifying ceramic-bonding procedures, new technological developments involve the inclusion of a silane coupling agent in a self-adhesive composite cement. To investigate the effectiveness of the incorporated silane coupling agent, shear bond strength (SB) to ceramic and dentin, contact angle of water (CA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Si nuclear magnetic resonance (NMR) assessments were correlatively conducted.

View Article and Find Full Text PDF

Several studies have shown the clinical success of hydraulic calcium-silicate cements (hCSCs) for direct and indirect pulp capping and root repair. However, hCSCs have various drawbacks, including long setting time, poor mechanical properties, low bond strength to dentin, and relatively poor handling characteristics. To overcome these limitations, a light-curable, resin-based hCSC (Theracal LC, Bisco) was commercially introduced; however, it did not exhibit much improvement in bond strength.

View Article and Find Full Text PDF

The remineralization mechanism in dental caries lesions is not completely understood. This study reports on ultrastructural and chemical changes observed within arrested caries lesions. Carious human teeth were observed using scanning electron microscopy (SEM) and focused-ion-beam (FIB)-SEM.

View Article and Find Full Text PDF