Publications by authors named "Noriyuki Kawano"

Radiobiological studies are ongoing to understand the consequences of internal exposure to neutron-activated radioactive microparticles, which were sprayed over experimental rats and mice. Special attention in these experiments is given to internal irradiation with radioactive microparticles with short-lived neutron-activated radionuclides 31Si (T1/2 = 2.62 h) and 56Mn (T1/2 = 2.

View Article and Find Full Text PDF

Neutron-activated 31Si is an almost pure beta emitter and is one of the short-lived radionuclides, including beta-gamma emitter 56Mn, which were created in a form of residual radioactivity in the early period after the atomic bombing of Hiroshima and Nagasaki. The features of the biological effects of internal irradiation by these radionuclides are a subject of scientific discussions and research. The publication presents data on internal radiation doses in experimental Wistar rats that were exposed to sprayed neutron-activated microparticles of 31SiO2.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate assessment of health risks from low-dose radiation relies on effective calculation of exposure estimates, which are verified with retrospective dosimetry methods.
  • A study compared calculated absorbed doses with those obtained through instrumental methods, specifically in residents of three Kazakh villages affected by nuclear testing in 1949, showing strong correlations between the two types of data.
  • The findings support the validity of the calculation method for estimating individual exposure and highlight the usefulness of additional data from soil contamination measurements for enhancing dose reconstruction.
View Article and Find Full Text PDF

Estimates of external absorbed dose in experimental animals exposed to sprayed neutron-activated 56Mn powder are necessary for comparison with internal absorbed doses estimated under the same exposure conditions, which is required for a correct interpretation of the observed biological effects. It has been established that the measured dose of external absorbed dose as a result of gamma irradiation range 1-15 mGy, which is order of magnitude less than the maximal dose of internal gamma and beta irradiation of the whole body of the same experimental animals irradiated under the same conditions: according to the available literature data, the maximal values ​​of absorbed dose of internal gamma-beta irradiation of the whole body are in the range of 330 mGy-1200 mGy for mice and 100 mGy-150 mGy for rats. It is concluded that under the conditions of experiments with dispersed neutron-activated powder 56MnO2, internal gamma-beta irradiation of experimental animals is the main factor of radiation exposure compared to external gamma irradiation.

View Article and Find Full Text PDF

The problem of differentiating between primary irradiation and exposure due to residual radioactivity following A-bombing (including beta-exposure), is the subject of special attention and discussions in order to understand the health effects following the Hiroshima and Nagasaki A-bombings, especially among newcomers to cities soon after the detonations. In this work, the method of single quartz grain luminescence retrospective dosimetry was applied for a retrospective estimation of the 'dose-depth' profile in a quartz-containing tile extracted from the building of former Hiroshima University (HU), which was a 'witness' of the Hiroshima atomic bombing on the 6 August 1945. It has been shown that results of retrospective estimates of the 'dose-depth' profile using the method of optically stimulated luminescence (OSL) from inclusions of quartz grains in very thin layers of the sample, in combination with the calculations of the 'dose-depth' profile using the Monte Carlo method, indicates the possible presence of beta irradiation of thin layers of the sample located near the surface of the tile facing the air, where there is no electronic equilibrium from gamma radiation.

View Article and Find Full Text PDF

Manganese-56 (56Mn) was one of the dominant neutron-activated radionuclides during the first hours following the atomic-bombing of Hiroshima and Nagasaki. The radiation spectrum of 56Mn and the radiation emission from excited levels of 56Fe following 56Mn beta-decay include gamma-quanta, beta-particles, Auger electrons and X-rays. The dispersion of neutron activated 56Mn in the air can lead to entering of radioactive microparticles into the lungs.

View Article and Find Full Text PDF