Publications by authors named "Noriyuki Hoya"

Cochlear fibrocytes play important roles in normal hearing as well as in several types of sensorineural hearing loss attributable to inner ear homeostasis disorders. Recently, we developed a novel rat model of acute sensorineural hearing loss attributable to fibrocyte dysfunction induced by a mitochondrial toxin. In this model, we demonstrate active regeneration of the cochlear fibrocytes after severe focal apoptosis without any changes in the organ of Corti.

View Article and Find Full Text PDF

Type I and type II spiral ganglion neurons (SGN) innervate the inner and outer hair cells of the cochlea, respectively. This neural system is established by reorganization of promiscuous innervation of the hair cells, immediately before hearing is established. The mechanism for this synaptic reorganization is unresolved but probably includes regulation of trophic support between the hair cells and the neurons.

View Article and Find Full Text PDF

Ca2+ signalling is central to cochlear sensory hair cell physiology through its influence on sound transduction, membrane filter properties and neurotransmission. However, the mechanism for establishing Ca2+ homeostasis in these cells remains unresolved. Canonical transient receptor potential (TRPC) Ca2+ entry channels provide an important pathway for maintaining intracellular Ca2+ levels.

View Article and Find Full Text PDF

Mitochondrial dysfunction in the cochlea is thought to be an important cause of sensorineural hearing loss. Recently, we have established a novel rat model with acute hearing impairment caused by exposure to the mitochondrial toxin 3-nitropropionic acid (3-NP) to analyze the mechanism of cochlear mitochondrial dysfunction. Both permanent and temporary threshold shifts were observed in this model depending on the amount of 3-NP used to induce hearing impairment.

View Article and Find Full Text PDF

Acute mitochondrial dysfunction in the cochlea is likely to result in hearing loss as a consequence of local energy shortage, similar to ischemia- or noise-induced hearing loss. To establish an animal model of acute cochlear mitochondrial dysfunction, we applied a mitochondrial toxin, 3-nitropropionic acid (3-NP) in the rat cochlea. Rats treated with 500mM 3-NP exhibited permanent threshold shifts in acoustic brainstem response while the same volume of 300mM 3-NP caused temporary threshold shifts.

View Article and Find Full Text PDF