Protein retention expansion microscopy (ExM) retains fluorescent signals in fixed tissue and isotropically expands the tissue to allow nanoscale (<70 nm) resolution on diffraction-limited confocal microscopes. Despite the numerous advantages of ExM, the protocol is time-consuming. Here, we adapted an ExM protocol to vibratome-sectioned brain tissue of Xenopus laevis tadpoles and implemented a microwave (M/W)-assisted protocol (ExM) to reduce the workflow from days to hours.
View Article and Find Full Text PDFProtein retention expansion microscopy (ExM) retains genetically encoded fluorescent proteins or antibody-conjugated fluorescent probes in fixed tissue and isotropically expands the tissue through a swellable polymer network to allow nanoscale (<70 nm) resolution on diffraction-limited confocal microscopes. Despite numerous advantages ExM brings to biological studies, the full protocol is time-consuming and can take multiple days to complete. Here, we adapted the ExM protocol to the vibratome-sectioned brain tissue of tadpoles and implemented a microwave-assisted protocol to reduce the workflow from days to hours.
View Article and Find Full Text PDF