Publications by authors named "Noriko Tanigawa"

Background: It is difficult to set up a balanced higher-order full-factorial experiment that can capture multiple intricate interactions between cognitive and psycholinguistic factors underlying bilingual speech production. To capture interactions more fully in one study, we analyzed object-naming reaction times (RTs) by using mixed-effects multiple regression.

Methods: Ten healthy bilinguals (median age: 23 years, seven females) were asked to name 131 colored pictures of common objects in each of their languages.

View Article and Find Full Text PDF

This is an explorative study applying presurgical navigated transcranial magnetic stimulation (nTMS) to investigate the spatial distributions of motor sites to reveal tumor-induced brain plasticity in patients with brain tumors. We analyzed nTMS-based motor maps derived from presurgical mapping of 100 patients with motor eloquently located brain tumors (tumors in the frontal lobe, the precentral gyrus [PrG], the postcentral gyrus [PoG], the remaining parietal lobe, or the temporal lobe). Based on these motor maps, we systematically investigated changes in motor evoked potential (MEP) counts among 4 gyri (PrG, PoG, medial frontal gyrus, and superior frontal gyrus) between subgroups of patients according to the tumor location in order to depict the tumor's influence on reorganization.

View Article and Find Full Text PDF

Besides motor and language function, tumor resections within the frontal and parietal lobe have also been reported to cause neuropsychological impairment like prosopagnosia. Since non-navigated transcranial magnetic stimulation (TMS) has previously been used to map neuropsychological cortical function, this study aims to evaluate the feasibility and spatial discrimination of repetitive navigated TMS (rTMS) mapping for detection of face processing impairment in healthy volunteers. The study was also designed to establish this examination for preoperative mapping in brain tumor patients.

View Article and Find Full Text PDF

OBJECTIVE The goal of this study was to obtain a better understanding of the mechanisms underlying cerebral plasticity. Coupled with noninvasive detection of its occurrence, such an understanding has huge potential to improve glioma therapy. The authors aimed to demonstrate the frequency of plastic reshaping, find clues to the patterns behind it, and prove that it can be recognized noninvasively using navigated transcranial magnetic stimulation (nTMS).

View Article and Find Full Text PDF

Background: Recording of motor evoked potentials (MEPs) is used during navigated transcranial magnetic stimulation (nTMS) motor mapping to locate motor function in the human brain. However, factors potentially underlying MEP latency variability in neurosurgical motor mapping are vastly unknown. In the context of this study, one hundred brain tumor patients underwent preoperative nTMS-based motor mapping of the tumor hemisphere between 2010 and 2013.

View Article and Find Full Text PDF

Correctly determining individual's resting motor threshold (rMT) is crucial for accurate and reliable mapping by navigated transcranial magnetic stimulation (nTMS), which is especially true for preoperative motor mapping in brain tumor patients. However, systematic data analysis on clinical factors underlying inter-individual rMT variability in neurosurgical motor mapping is sparse. The present study examined 14 preselected clinical factors that may underlie inter-individual rMT variability by performing multiple regression analysis (backward, followed by forward model comparisons) on the nTMS motor mapping data of 100 brain tumor patients.

View Article and Find Full Text PDF

Concerning calculation function, studies have already reported on localizing computational function in patients and volunteers by functional magnetic resonance imaging and transcranial magnetic stimulation. However, the development of accurate repetitive navigated TMS (rTMS) with a considerably higher spatial resolution opens a new field in cognitive neuroscience. This study was therefore designed to evaluate the feasibility of rTMS for locating cortical calculation function in healthy volunteers, and to establish this technique for future scientific applications as well as preoperative mapping in brain tumor patients.

View Article and Find Full Text PDF

Objectives: Recent repetitive TMS (rTMS) mapping protocols for language mapping revealed deficits of this method, mainly in posterior brain regions. Therefore this study analyzed the impact of different language tasks on the localization of language-positive brain regions and compared their effectiveness, especially with regard to posterior brain regions.

Methods: Nineteen healthy, right-handed subjects performed object naming, pseudoword reading, verb generation, and action naming during rTMS language mapping of the left hemisphere.

View Article and Find Full Text PDF

Navigated transcranial magnetic stimulation (nTMS) gains increasing importance in presurgical language mapping. Although bipolar direct cortical stimulation (DCS) is regarded as the gold standard for intraoperative mapping of language-related areas, it cannot be used to map the healthy human brain due to its invasive character. Therefore, the present study employed a non-invasive virtual-lesion modality to provide a causality-confirmed cortical language map of the healthy human brain by repetitive nTMS (rTMS) with functional specifications beyond language-positive/language-negative distinction.

View Article and Find Full Text PDF

Object: Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions.

View Article and Find Full Text PDF

Background: Although language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) gains importance in neuropsychological research and clinical utility, neuroscientists still use different mapping protocols including different stimulation frequencies. To refine the existing language protocol, we tested two different repetition rates of 5 Hz/10 pulses and 7 Hz/10 pulses with a 0 ms delay in 19 healthy subjects. We furthermore investigated differences between both frequencies in case of performance of four different language tasks: object naming, pseudoword reading, verb generation, and action naming.

View Article and Find Full Text PDF

Object: Repetitive navigated transcranial magnetic stimulation (rTMS) is now increasingly used for preoperative language mapping in patients with lesions in language-related areas of the brain. Yet its correlation with intraoperative direct cortical stimulation (DCS) has to be improved. To increase rTMS's specificity and positive predictive value, the authors aim to provide thresholds for rTMS's positive language areas.

View Article and Find Full Text PDF

Background: Knowledge about the cortical representation of semantic processing is mainly derived from functional magnetic resonance imaging (fMRI) or direct cortical stimulation (DCS) studies. Because DCS is regarded as the gold standard in terms of language mapping but can only be used during awake surgery due to its invasive character, repetitive navigated transcranial magnetic stimulation (rTMS)—a non-invasive modality that uses a similar technique as DCS—seems highly feasible for use in the investigation of semantic processing in the healthy human brain.

Methods: A total number of 100 (50 left-hemispheric and 50 right-hemispheric) rTMS-based language mappings were performed in 50 purely right-handed, healthy volunteers during an object-naming task.

View Article and Find Full Text PDF

Object: Repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used for preoperative cortical language mapping. Unlike direct cortical stimulation (DCS), and due to its non-invasive character, this technique can provide a map of the distribution of human language in the healthy brain as well as a dysfunctional brain. Although functional magnetic resonance imaging (fMRI) studies have reported interhemispheric functional connectivity between language structures, the way in which the right hemisphere helps bring about language function remains only partially investigated.

View Article and Find Full Text PDF

Object: Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming.

View Article and Find Full Text PDF

Stereotype threat occurs when people who belong to socially devalued groups experience a fear of negative evaluation, which interferes with the goal of staying task focused. The current study was designed to examine whether priming socially devalued individuals with an implemental (vs. a deliberative) mindset, characterized by forming a priori goal-directed plans, would help these individuals to overcome threat-induced distracting states.

View Article and Find Full Text PDF