The formation process and growth dynamics of the grid pattern, a cellular convective pattern in the electroconvection of nematic liquid crystals, are investigated. The grid pattern appears via a disordered state called defect turbulence with the increasing of an applied voltage. The averaged defect density increases with the applied voltage and then the defects that have been in the continuous process of creation and annihilation are frozen as grid cells forming domain structures.
View Article and Find Full Text PDFMacroscopic patterns in nature formed during crystal growth e.g. snow crystals have a significant influence on many material properties, such as macroscopic heat conduction, electrical conduction, and mechanical properties, even with the same microscopic crystal structure.
View Article and Find Full Text PDFIn liquid-liquid dissolution, the critical point of phase separation is determined by the temperature. When the solvent consists of multi-components, in contrast, the mole fractions in the solvent also take on the role of control parameter. In this study an ionic liquid dissolves into a binary solvent composed of ethanol and water.
View Article and Find Full Text PDFThe states of foam are empirically classified into dry foam and wet foam by the volume fraction of the liquid. Recently, a transition between the dry foam state and the wet foam state has been found by characterizing the bubble shapes [Furuta et al., Sci.
View Article and Find Full Text PDFLiquid foams are classified into a dry foam and a wet foam, empirically judging from the liquid fraction or the shape of the gas bubbles. It is known that physical properties such as elasticity and diffusion are different between the dry foam and the wet foam. Nevertheless, definitions of those states have been vague and the dry-wet transition of foams has not been clarified yet.
View Article and Find Full Text PDFPatterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood.
View Article and Find Full Text PDFWe experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2015
Two types of spatiotemporal chaos in the electroconvection of nematic liquid crystals, such as defect turbulence and spatiotemporal intermittency, have been statistically investigated according to the Lagrangian picture. Here fluctuations are traced using the motion of a single particle driven by chaotic convection. In the defect turbulence (fluctuating normal rolls), a particle is mainly trapped in a roll but sometimes jumps to a neighboring roll.
View Article and Find Full Text PDFDictyostelium discoideum cells respond to periodic signals of extracellular cAMP by collective changes of cell-cell and cell-substrate contacts. This was confirmed by dielectric analysis employing electric cell-substrate impedance sensing (ECIS) and impedance measurements involving cell-filled micro channels in conjunction with optical microscopy providing a comprehensive picture of chemotaxis under conditions of starvation.
View Article and Find Full Text PDFChemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal.
View Article and Find Full Text PDFFor soft-mode turbulence, which is essentially the spatiotemporal chaos caused by the nonlinear interaction between convective modes and Goldstone modes in electroconvection of homeotropic nematics, a type of order-disorder phase transition was revealed, in which a new order parameter was introduced as pattern ordering. We calculated the spatial correlation function and the anisotropy of the convective patterns as a 2D XY system because the convective wave vector could freely rotate in the homeotropic system. We found the hidden order in the chaotic patterns observed beyond the Lifshitz frequency f(L), and a transition from a disordered to a hidden ordered state occurred at the f(L) with the increase of the frequency of the applied voltages.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2008
This paper reports the control of spatiotemporal intermittency in an electroconvective system in a nematic liquid crystal. In the spatiotemporal intermittency, an ordered structure [the defect lattice (DL)] coexists with turbulence. Control of the spatiotemporal intermittency, in which the turbulent state changes to a DL, is achieved by a few percent amplitude modulation of the applied ac voltage.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2004
The formation of a defect lattice--i.e., a periodic orientational structure of numerous defect pairs--is experimentally investigated in the electroconvection of nematics.
View Article and Find Full Text PDF