Some of the important factors that characterise room-temperature ionic liquids (RTILs) are the variety of conformations adopted by the constituent ions and their flexibility. Using 1,3-dimethylimidazolium bis(fluorosulfonyl)amide ([C1mim][FSA]) and 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl)amide ([C1mim][NTf2]) as samples, the longitudinal and transverse relaxation times (T1 and T2) for (19)F and (1)H were determined as a function of temperature and were correlated with the dynamics of the phase behaviours of the two RTILs. Because the anions and cations in the two compounds have (19)F and (1)H nuclei, respectively, their dynamics can be independently investigated and the relationships between them can be discussed.
View Article and Find Full Text PDFThe rotational dynamics of the hexafluorophosphate anion (PF(6)(-)) in the crystalline and liquid states of the archetypal room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim]PF(6)) are investigated using (31)P NMR spectroscopy line shape analyses and spin-lattice relaxation time measurements. The PF(6)(-) anion performs isotropic rotation in all three polymorphic crystals phases α, β, and γ as well as in the liquid state with a characteristic time scale that ranges from a few ps to a few hundred ps over a temperature range of 180-280 K. The rotational correlation time τ(c) for PF(6)(-) rotation follows the sequence γ-phase < α-phase ≈ liquid < β-phase.
View Article and Find Full Text PDFWe investigate the cation rotational dynamics of a room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim]PF(6)) in its three crystalline states by (1)H NMR spectroscopy. Spin-lattice and spin-spin relaxation time (T(1) and T(2), respectively) measurements as a function of temperature confirm the presence of three polymorphic crystals of [C(4)mim]PF(6): crystals α, β, and γ, which we previously discovered using Raman spectroscopy and calorimetry. Second moment calculations of (1)H NMR spectra reveal that certain segmental motions of the butyl group in addition to the rapid rotation of the two methyl groups in the cation occur in all the crystals.
View Article and Find Full Text PDF