Genetically engineered CD8 T cells are being explored for the treatment of various cancers. Analytical characterization represents a major challenge in the development of genetically engineered cell therapies, especially assessing the potential off-target editing and product heterogeneity. As conventional sequencing techniques only provide information at the bulk level, they are unable to detect off-target CRISPR translocation or editing events occurring in minor cell subpopulations.
View Article and Find Full Text PDFThe motility of blood monocytes is orchestrated by the activity of cell-surface integrins, which translate extracellular signals into cytoskeletal changes to mediate adhesion and migration. is an intracellular parasite that infects migratory cells and enhances their motility, but the mechanisms underlying -induced hypermotility are incompletely understood. We investigated the molecular basis for the hypermotility of primary human peripheral blood monocytes and THP-1 cells infected with Compared with uninfected monocytes, infection of monocytes reduced cell spreading and the number of activated β1 integrin clusters in contact with fibronectin during settling, an effect not observed in monocytes treated with lipopolysaccharide (LPS) or Furthermore, infection disrupted the phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 (Tyr-397) and Tyr-925 and of the related protein proline-rich tyrosine kinase (Pyk2) at Tyr-402.
View Article and Find Full Text PDFAn important function of the blood-brain barrier is to exclude pathogens from the central nervous system, but some microorganisms benefit from the ability to enter this site. It has been proposed that Toxoplasma gondii can cross biological barriers as a motile extracellular form that uses transcellular or paracellular migration, or by infecting a host cell that then crosses the blood-brain barrier. Unexpectedly, analysis of acutely infected mice revealed significant numbers of free parasites in the blood and the presence of infected endothelial cells in the brain vasculature.
View Article and Find Full Text PDFInfection of the central nervous system (CNS) is a significant cause of morbidity and mortality, and treatments available to combat the highly debilitating symptoms of CNS infection are limited. The mechanisms by which pathogens in the circulation overcome host immunity and breach the blood-brain barrier are active areas of investigation. In this review, we discuss recent work that has significantly advanced our understanding of the avenues of pathogen dissemination to the CNS for four eukaryotic pathogens of global health importance: Toxoplasma gondii, Plasmodium falciparum, Trypanosoma brucei, and Cryptococcus neoformans.
View Article and Find Full Text PDFToxoplasma gondii is a highly prevalent intracellular protozoan parasite that causes severe disease in congenitally infected or immunocompromised hosts. T. gondii is capable of invading immune cells and it has been suggested that the parasite harnesses the migratory pathways of these cells to spread through the body.
View Article and Find Full Text PDFPeripheral blood monocytes are actively infected by Toxoplasma gondii and can function as 'Trojan horses' for parasite spread in the bloodstream. Using dynamic live-cell imaging, we visualized the transendothelial migration (TEM) of T. gondii-infected primary human monocytes during the initial minutes following contact with human endothelium.
View Article and Find Full Text PDFUnlabelled: Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood.
View Article and Find Full Text PDFToxoplasma gondii actively infects circulating immune cells, including monocytes and DCs, and is thought to use these cells as Trojan horses for parasite dissemination. To investigate the interactions of T. gondii-infected human monocytes with vascular endothelium under conditions of shear stress, we developed a fluidic and time-lapse fluorescence microscopy system.
View Article and Find Full Text PDFTrends Parasitol
August 2012
The extracellular promastigote stage of Leishmania spp. is transmitted to mammals by a sand fly vector. Leishmania promastigotes ligate host macrophage receptors, triggering phagocytosis and subsequent internalization, a crucial step for survival.
View Article and Find Full Text PDFLeishmania spp. protozoa are obligate intracellular parasites that replicate in macrophages during mammalian infection. Efficient phagocytosis and survival in macrophages are important determinants of parasite virulence.
View Article and Find Full Text PDFThe parasitic protozoan, Leishmania, survives in harsh environments within its mammalian and sand fly hosts. Secreted proteins likely play critical roles in the parasite's interactions with its environment. As a preliminary identification of the spectrum of potential excreted/secreted (ES) proteins of Leishmania infantum chagasi (Lic), a causative agent of visceral leishmaniasis, we used standard algorithms to screen the annotated L.
View Article and Find Full Text PDFThe obligate intracellular protozoan, Leishmania infantum chagasi (Lic) undergoes receptor-mediated phagocytosis by macrophages followed by a transient delay in phagolysosome maturation. We found differences in the pathway through which virulent Lic metacyclic promastigotes or avirulent logarithmic promastigotes are phagocytosed by human monocyte-derived macrophages (MDMs). Both logarithmic and metacyclic promastigotes entered MDMs through a compartment lined by the third complement receptor (CR3).
View Article and Find Full Text PDFTwo methanogenic cultures were enriched from acidic peat soil using a growth medium buffered to c. pH 5. One culture, 6A, was obtained from peat after incubation with H(2)/CO(2), whereas culture NTA was derived from a 10(-4) dilution of untreated peat into a modified medium.
View Article and Find Full Text PDF