Publications by authors named "Norikazu Ohnishi"

Aim: This study assessed the effects of hand-bathing on sympathetic nervous activity exacerbated by psychological stress. Participants immersed one hand in warm water for 2 min while exposed to noise, and changes in blood flow and skin temperature of the non-immersed hand were observed.

Methods: Twenty-nine healthy university students aged 20 years or older were randomly assigned to either the hand-bathing group (n = 14) or the control group (n = 15).

View Article and Find Full Text PDF

Vesicle-inducing protein in plastid 1 (VIPP1), characteristic to oxygenic photosynthetic organisms, is a membrane-remodeling factor that forms homo-oligomers and functions in thylakoid membrane formation and maintenance. The cyanobacterial VIPP1 structure revealed a monomeric folding pattern similar to that of endosomal sorting complex required for transport (ESCRT) III. Characteristic to VIPP1, however, is its own GTP and ATP hydrolytic activity without canonical domains.

View Article and Find Full Text PDF
Article Synopsis
  • VIPP1 is a crucial protein in cyanobacteria that helps create and maintain thylakoid membranes, which are essential for photosynthesis.
  • Researchers used cryo-electron microscopy to analyze the structure of VIPP1, revealing how its flexible monomers form ring-like structures that aid in membrane binding and curvature.
  • Mutations in VIPP1 lead to issues with thylakoid stability under stress, highlighting its important role in protecting membranes from damage while the study also employs cryo-CLEM to visualize VIPP1's interaction with chloroplast membranes.
View Article and Find Full Text PDF

Unlike the lumbar spine and femur, the radius does not bear a gravitational mechanical compression load during daily activities. The distal radius is a common fracture site, but few studies have addressed the effects of exercise on fracture risk. The aim of this study was to determine the effects of the pole push-off movement of Nordic walking (NW) on the bone mineral content (BMC) and areal bone mineral density (aBMD) of the distal radius and the muscle cross-sectional area (CSA) at the mid-humeral and mid-femoral levels.

View Article and Find Full Text PDF

Sorghum [Sorghum bicolor (L.) Moench] grown locally by Japanese farmers is generically termed Takakibi, although its genetic diversity compared with geographically distant varieties or even within Takakibi lines remains unclear. To explore the genomic diversity and genetic traits controlling biomass and other physiological traits in Takakibi, we focused on a landrace, NOG, in this study.

View Article and Find Full Text PDF

Sorghum [Sorghum bicolor (L.) Moench] is a C4 crop known to be adaptable to harsh environments such as those under high temperature and water deficit. In this study, we focused on a Japanese sorghum landrace Takakibi (NOG) and employed chlorophyll fluorescence measurements to assess its response to environmental stress.

View Article and Find Full Text PDF

Herein we describe two experiments in which the recruitment and pressure-induced modifications of human eccrine sweating were investigated. In one experiment, the longstanding belief that glandular recruitment follows a gradual, caudal-to-rostral (dermatomal) recruitment pattern was re-evaluated. The onset of sweating was simultaneously determined (ventilated capsules) from four spinal (dermatomal) segments (forehead, dorsal hand, lower chest and dorsal foot) during the passive heating of supine participants (N = 8).

View Article and Find Full Text PDF

Mitochondria and chloroplasts (plastids) both harbour extranuclear DNA that originates from the ancestral endosymbiotic bacteria. These organelle DNAs (orgDNAs) encode limited genetic information but are highly abundant, with multiple copies in vegetative tissues, such as mature leaves. Abundant orgDNA constitutes a substantial pool of organic phosphate along with RNA in chloroplasts, which could potentially contribute to phosphate recycling when it is degraded and relocated.

View Article and Find Full Text PDF

VESICLE-INDUCING PROTEIN IN PLASTID1 (VIPP1) is conserved among oxygenic photosynthetic organisms and appears to have diverged from the bacterial PspA protein. VIPP1 localizes to the chloroplast envelope and thylakoid membrane, where it forms homooligomers of high molecular mass. Although multiple roles of VIPP1 have been inferred, including thylakoid membrane formation, envelope maintenance, membrane fusion, and regulation of photosynthetic activity, its precise role in chloroplast membrane quality control remains unknown.

View Article and Find Full Text PDF

Unequivocal enhancement of cutaneous vasomotor function has yet to be demonstrated following heat acclimation, possibly because the adaptation stimulus was not sustained, or because thermoeffector function was not assessed at equivalent deep-body temperatures. Therefore, forearm and local cutaneous vascular conductances were evaluated during exercise eliciting matched deep-body temperatures (37.5 °C, 38.

View Article and Find Full Text PDF

What is the central question of this study? Can sex-related differences in cutaneous vascular and sudomotor responses be explained primarily by variations in the ratio between body surface area and mass during compensable exercise that elicits equivalent heat-loss requirements and mean body temperature changes across participants? What is the main finding and its importance? Mass-specific surface area was a significant determinant of vasomotor and sudomotor responses in men and women, explaining 10-48% of the individual thermoeffector variance. Nonetheless, after accounting for changes in mean body temperature and morphological differences, sex explained only 5% of that inter-individual variability. It was concluded that sex differences in thermoeffector function are morphologically dependent, but not sex dependent.

View Article and Find Full Text PDF

Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.

View Article and Find Full Text PDF

The biflagellate green alga Chlamydomonas reinhardtii exhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant, lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type.

View Article and Find Full Text PDF

A novel cryogenic optical-microscope system was developed in which the objective lens is set inside of the cryostat adiabatic vacuum space. Being isolated from the sample when it was cooled, the objective lens was maintained at room temperature during the cryogenic measurement. Therefore, the authors were able to use a color-aberration corrected objective lens with a numerical aperture of 0.

View Article and Find Full Text PDF

Aquatic photosynthetic organisms can modulate their photosynthesis to acclimate to CO₂-limiting stress by inducing a carbon-concentrating mechanism (CCM) that includes carbonic anhydrases and inorganic carbon (Ci) transporters. However, to date, Ci-specific transporters have not been well characterized in eukaryotic algae. Previously, a Chlamydomonas reinhardtii mutant (lcr1) was identified that was missing a Myb transcription factor.

View Article and Find Full Text PDF

The purpose of the present study was to clarify the effects of wind and rain on peripheral heat loss by non-exercising minimally clothed humans in a mildly cold environment. Seven healthy young male subjects wearing only shorts rested in a standing position for 20 min at an ambient temperature of 15 degrees C under three conditions: without exposure to wind or rain (CON), with exposure to wind (3 m/s) (WIND) and with exposure to wind (3 m/s) and rain (40 mm/h) (WIND + RAIN). Mean heat loss measured using a heat flux transducer was significantly greater in the subjects exposed to WIND + RAIN compared to those exposed to CON and WIND conditions (p < 0.

View Article and Find Full Text PDF

The small hydrophobic polypeptide PsbT is associated with the photosystem II (PSII) reaction center (D1/D2 heterodimer). Here, we report the effect of the deletion of PsbT on the biogenesis of PSII complex during light-induced greening of y-1 mutants of the green alga Chlamydomonas reinhardtii. The y-1 is unable to synthesize chlorophylls in the dark but do so in the light.

View Article and Find Full Text PDF

Cyanelles are the peculiar plastids of glaucocystophyte algae that retained a peptidoglycan wall from the ancestral cyanobacterial endosymbiont. All cyanobacteria and most algae possess an inorganic carbon-concentrating mechanism (CCM) that involves a microcompartment--carboxysomes in prokaryotes and pyrenoids in eukaryotes--harboring the bulk of cellular (plastidic) Rubisco. In the case of the living fossil, Cyanophora paradoxa, the existence of a CCM was a matter of debate.

View Article and Find Full Text PDF

PsbT is a small chloroplast-encoded hydrophobic polypeptide associated with the D1/D2 heterodimer of the photosystem II (PSII) reaction center and is required for the efficient post-translational repair of photodamaged PSII. Here we addressed that role in detail in Chlamydomonas reinhardtii wild type and DeltapsbT cells by analyzing the activities of PSII, the assembly of PSII proteins, and the redox components of PSII during photoinhibition and repair. Strong illumination of cells for 15 min decreased the activities of electron transfer through PSII and Q(A) photoreduction by 50%, and it reduced the amount of atomic manganese by 20%, but it did not affect the steady-state level of PSII proteins, photoreduction of pheophytin (pheo(D1)), and the amount of bound plastoquinone (Q(A)), indicating that the decrease in PSII activity resulted mainly from inhibition of the electron transfer from pheo(D1) to Q(A).

View Article and Find Full Text PDF

Glycinebetaine (hereafter referred to as betaine) is a compatible solute that accumulates in certain plants and microorganisms in response to various types of stress. We demonstrated previously that when the cyanobacterium Synechococcus sp. PCC 7942 (hereafter Synechococcus) is transformed with the codA gene for choline oxidase, it can synthesize betaine from exogenously supplied choline, exhibiting enhanced tolerance to salt and cold stress.

View Article and Find Full Text PDF

The influence of regular post-exercise cold application to exercised muscles trained by ergometer cycling (leg muscles) or handgrip exercise using a weight-loaded handgrip ergometer (forearm flexor muscles) was studied in human volunteers. Muscle loads were applied during exercise programs three to four times a week for 4-6 weeks. Besides measuring parameters characterizing muscle performance, femoral and brachial artery diameters were determined ultrasonographically.

View Article and Find Full Text PDF

Under strong light, photosystem II (PSII) of oxygenic photosynthetic organisms is inactivated, and this phenomenon is called photoinhibition. In a widely accepted model, photoinhibition is induced by excess light energy, which is absorbed by chlorophyll but not utilized in photosynthesis. Using monochromatic light from the Okazaki Large Spectrograph and thylakoid membranes from Thermosynechococcus elongatus, we observed that UV and blue light inactivated the oxygen-evolving complex much faster than the photochemical reaction center of PSII.

View Article and Find Full Text PDF