Publications by authors named "Norihisa Bizen"

Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g.

View Article and Find Full Text PDF

Phosphoinositides (PIPs) act as intracellular signaling molecules that regulate various cellular processes. Abnormalities in PIP metabolism cause various pathological conditions, including neurodegenerative diseases, cancer and immune disorders. Several neurological diseases with diverse phenotypes, such as ataxia with cerebellar atrophy or intellectual disability without brain malformation, are caused by mutations in INPP4A, which encodes a phosphoinositide phosphatase.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are the most common type of glial cells in the brain and have unique roles tied to their various subpopulations, particularly in relation to brain health and disease.
  • A specific glycosylation of the PTPRZ protein, crucial for astrocyte function, is prevalent in reactive astrocytes during demyelination, but its role across different diseases has not been fully explored.
  • Research shows that glycosylated PTPRZ is found in damaged brain areas of multiple sclerosis patients and in certain mouse models of demyelination, indicating that this modification is significant for the behavior and characteristics of astrocytes in disease contexts.
View Article and Find Full Text PDF

Olig2 is indispensable for motoneuron and oligodendrocyte fate-specification in the pMN domain of embryonic spinal cords, and also involved in the proliferation and differentiation of several cell types in the nervous system, including neural progenitor cells (NPCs) and oligodendrocytes. However, how Olig2 controls these diverse biological processes remains unclear. Here, we demonstrated that a novel Olig2-binding protein, DEAD-box helicase 20 (Ddx20), is indispensable for the survival of NPCs and oligodendrocyte progenitor cells (OPCs).

View Article and Find Full Text PDF

Oligodendrocytes form myelin sheaths that surround axons, contributing to saltatory conduction and proper central nervous system (CNS) function. Oligodendrocyte progenitor cells (OPCs) are generated during the embryonic stage and differentiate into myelinating oligodendrocytes postnatally. Ddx20 is a multifunctional, DEAD-box helicase involved in multiple cellular processes, including transcription, splicing, microRNA biogenesis, and translation.

View Article and Find Full Text PDF

Loss-of-function mutations in dystonin () can cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) or epidermolysis bullosa simplex (EBS). Recently, -related diseases were recognized to be more complex than previously thought because a patient exhibited both neurological and skin manifestations, whereas others display only one or the other. A single locus produces at least three major isoforms: (neuronal isoform), (muscular isoform) and (epithelial isoform).

View Article and Find Full Text PDF

The bHLH transcription factor Olig2 is required for sequential cell fate determination of both motor neurons and oligodendrocytes and for progenitor proliferation in the central nervous system. However, the role of Olig2 in peripheral sensory neurogenesis remains unknown. We report that Olig2 is transiently expressed in the newly differentiated olfactory sensory neurons (OSNs) and is down-regulated in the mature OSNs in mice from early gestation to adulthood.

View Article and Find Full Text PDF

Vanishing white matter disease (VWM) is an autosomal recessive neurological disorder caused by mutation(s) in any subunit of eukaryotic translation initiation factor 2B (eIF2B), an activator of translation initiation factor eIF2. VWM occurs with mutation of the genes encoding eIF2B subunits (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5). However, little is known regarding the underlying pathogenetic mechanisms or how to treat patients with VWM.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER), including the nuclear envelope, is a continuous and intricate membrane-bound organelle responsible for various cellular functions. In neurons, the ER network is found in cell bodies, axons, and dendrites. Recent studies indicate the involvement of the ER network in neuronal development, such as neuronal migration and axonal outgrowth.

View Article and Find Full Text PDF

The ubiquitin fold modifier 1 (UFM1) cascade is a recently identified evolutionarily conserved ubiquitin-like modification system whose function and link to human disease have remained largely uncharacterized. By using exome sequencing in Finnish individuals with severe epileptic syndromes, we identified pathogenic compound heterozygous variants in UBA5, encoding an activating enzyme for UFM1, in two unrelated families. Two additional individuals with biallelic UBA5 variants were identified from the UK-based Deciphering Developmental Disorders study and one from the Northern Finland Intellectual Disability cohort.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are believed to be maintained within a microenvironmental niche. Here we used polymer microarrays for the rapid and efficient identification of glioma CSC (GSC) niche mimicries and identified a urethane-based synthetic polymer, upon which two groups of niche components, namely extracellular matrices (ECMs) and iron are revealed. In cultures, side population (SP) cells, defined as GSCs in the rat C6 glioma cell line, are more efficiently sustained in the presence of their differentiated progenies expressing higher levels of ECMs and transferrin, while in xenografts, ECMs are supplied by the vascular endothelial cells (VECs), including SP cell-derived ones with distinctively greater ability to retain xenobiotics than host VECs.

View Article and Find Full Text PDF

Self-renewing proliferation of neural stem cells (NSCs) is intimately linked to the inhibition of neuronal and glial differentiation, however, their molecular linkage has been poorly understood. We have proposed a model previously explaining partly this linkage, in which fibroblast growth factor 2 (FGF2) and Wnt signals cooperate to promote NSC self-renewal via β-catenin accumulation, which leads to the promotion of proliferation by lymphoid enhancer factor (LEF)/T-cell factor (TCF)-mediated cyclin D1 expression and at the same time to the inhibition of neuronal differentiation by β-catenin-mediated potentiation of Notch signaling. To fully understand the mechanisms underlying NSC self-renewal, it needs to be clarified how these growth factor signals inhibit glial differentiation as well.

View Article and Find Full Text PDF

A pentaspan membrane glycoprotein prominin-1 (frequently called CD133 in human) is widely used as a surface marker to identify and isolate normal stem/progenitor cells from various organs, although it is also expressed in some types of differentiated cells. Since CD133 was identified as a universal marker to isolate cancer stem cells (CSCs) in tumors derived from multiple tissues, much attention has been directed toward the relationship between its gene regulation and identity of CSCs (i.e.

View Article and Find Full Text PDF

Background: An increasing number of studies support the presence of stem-like cells in human malignancies. These cells are primarily responsible for tumor initiation and thus considered as a potential target to eradicate tumors. CD133 has been identified as an important cell surface marker to enrich the stem-like population in various human tumors.

View Article and Find Full Text PDF